IEEE Trans Neural Netw Learn Syst. 2018 Feb;29(2):427-439. doi: 10.1109/TNNLS.2016.2630802. Epub 2016 Dec 2.
In this paper, we elaborate over the well-known interpretability issue in echo-state networks (ESNs). The idea is to investigate the dynamics of reservoir neurons with time-series analysis techniques developed in complex systems research. Notably, we analyze time series of neuron activations with recurrence plots (RPs) and recurrence quantification analysis (RQA), which permit to visualize and characterize high-dimensional dynamical systems. We show that this approach is useful in a number of ways. First, the 2-D representation offered by RPs provides a visualization of the high-dimensional reservoir dynamics. Our results suggest that, if the network is stable, reservoir and input generate similar line patterns in the respective RPs. Conversely, as the ESN becomes unstable, the patterns in the RP of the reservoir change. As a second result, we show that an RQA measure, called , is highly correlated with the well-established maximal local Lyapunov exponent. This suggests that complexity measures based on RP diagonal lines distribution can quantify network stability. Finally, our analysis shows that all RQA measures fluctuate on the proximity of the so-called edge of stability, where an ESN typically achieves maximum computational capability. We leverage on this property to determine the edge of stability and show that our criterion is more accurate than two well-known counterparts, both based on the Jacobian matrix of the reservoir. Therefore, we claim that RPs and RQA-based analyses are valuable tools to design an ESN, given a specific problem.
在本文中,我们详细阐述了回声状态网络(ESN)中众所周知的可解释性问题。我们的想法是利用复杂系统研究中发展的时间序列分析技术来研究储层神经元的动力学。值得注意的是,我们使用递归图(RP)和递归定量分析(RQA)分析神经元激活的时间序列,这允许可视化和表征高维动力系统。我们表明,这种方法在很多方面都很有用。首先,RP 提供的 2D 表示为高维储层动力学提供了可视化。我们的结果表明,如果网络稳定,储层和输入在各自的 RP 中生成相似的线图案。相反,随着 ESN 变得不稳定,储层 RP 中的模式会发生变化。作为第二个结果,我们表明,称为 的 RQA 度量与经过充分验证的最大局部 Lyapunov 指数高度相关。这表明基于 RP 对角线分布的复杂度度量可以量化网络稳定性。最后,我们的分析表明,所有 RQA 度量在所谓的稳定性边缘附近波动,ESN 通常在该边缘处达到最大计算能力。我们利用这一特性来确定稳定性边缘,并表明我们的准则比基于储层雅可比矩阵的两个著名准则更准确。因此,我们声称基于 RP 和 RQA 的分析是设计 ESN 的有价值的工具,因为具体问题。