Centre for Integrative Genetics (CIGENE), Dept. of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (UMB), P.O. Box 5003, N-1432 As, Norway.
Centre for Integrative Genetics (CIGENE), Dept. of Plant and Environmental Sciences, Norwegian University of Life Sciences (UMB), P.O. Box 5003, N-1432 As, Norway.
Gene. 2014 Jun 15;543(2):268-74. doi: 10.1016/j.gene.2014.02.042. Epub 2014 Feb 26.
In mammals, two carotenoid cleaving oxygenases are known; beta-carotene 15,15'-monooxygenase (BCMO1) and beta-carotene 9',10'-oxygenase (BCO2). BCMO1 is a key enzyme in vitamin A synthesis by symmetrically cleaving beta-carotene into 2 molecules of all-trans-retinal, while BCO2 is responsible for asymmetric cleavage of a broader range of carotenoids. Here, we show that the Atlantic salmon beta-carotene oxygenase (bco) gene family contains 5 members, three bco2 and two bcmo1 paralogs. Using public sequence databases, multiple bco genes were also found in several additional teleost species. Phylogenetic analysis indicates that bco2a and bco2b originate from the teleost fish specific genome duplication (FSGD or 3R), while the third and more distant paralog, bco2 like, might stem from a prior duplication event in the teleost lineage. The two bcmo1 paralogs (bcmo1 and bcmo1 like) appear to be the result of an ancient duplication event that took place before the divergence of ray-finned (Actinopterygii) and lobe-finned fish (Sarcopterygii), with subsequent nonfunctionalization and loss of one Sarcopterygii paralog. Gene expression analysis of the bcmo1 and bco2 paralogs in Atlantic salmon reveals regulatory divergence with tissue specific expression profiles, suggesting that the beta-carotene oxygenase subtypes have evolved functional divergences. We suggest that teleost fish have evolved and maintained an extended repertoire of beta-carotene oxygenases compared to the investigated Sarcopterygii species, and hypothesize that the main driver behind this functional divergence is the exposure to a diverse set of carotenoids in the aquatic environment.
在哺乳动物中,已知有两种类胡萝卜素裂解加氧酶;β-胡萝卜素 15,15'-单加氧酶(BCMO1)和β-胡萝卜素 9',10'-加氧酶(BCO2)。BCMO1 是通过对称裂解β-胡萝卜素生成 2 个全反式视黄醛分子来合成维生素 A 的关键酶,而 BCO2 负责更广泛的类胡萝卜素的不对称裂解。在这里,我们表明大西洋鲑鱼β-胡萝卜素加氧酶(bco)基因家族包含 5 个成员,3 个 bco2 和 2 个 bcmo1 旁系同源物。使用公共序列数据库,在其他几种硬骨鱼物种中也发现了多个 bco 基因。系统发育分析表明,bco2a 和 bco2b 起源于硬骨鱼特异性基因组复制(FSGD 或 3R),而第三个也是更远的旁系同源物 bco2-like 可能源自硬骨鱼谱系中的先前复制事件。两个 bcmo1 旁系同源物(bcmo1 和 bcmo1-like)似乎是发生在射线鳍鱼(Actinopterygii)和肺鱼(Sarcopterygii)分化之前的古老复制事件的结果,随后其中一个 Sarcopterygii 旁系同源物发生了非功能化和丢失。大西洋鲑鱼 bcmo1 和 bco2 旁系同源物的基因表达分析显示出组织特异性表达谱的调控分歧,表明β-胡萝卜素加氧酶亚型已经进化出功能上的差异。我们认为,与所研究的肉鳍鱼物种相比,硬骨鱼已经进化并维持了扩展的β-胡萝卜素加氧酶 repertoire,并假设这种功能分化的主要驱动因素是暴露在水生环境中的各种类胡萝卜素。