Suppr超能文献

节点干扰和稳健性:在生物网络上进行虚拟敲除实验:以白细胞整合素激活网络为例。

Node interference and robustness: performing virtual knock-out experiments on biological networks: the case of leukocyte integrin activation network.

机构信息

Center for BioMedical Computing (CBMC), University of Verona, Verona, Italy.

Department of Pathology and Diagnostic, University of Verona, Verona, Italy.

出版信息

PLoS One. 2014 Feb 20;9(2):e88938. doi: 10.1371/journal.pone.0088938. eCollection 2014.

Abstract

The increasing availability of large network datasets derived from high-throughput experiments requires the development of tools to extract relevant information from biological networks, and the development of computational methods capable of detecting qualitative and quantitative changes in the topological properties of biological networks is of critical relevance. We introduce the notions of node interference and robustness as measures of the reciprocal influence between nodes within a network. We examine the theoretical significance of these new, centrality-based, measures by characterizing the topological relationships between nodes and groups of nodes. Node interference analysis allows topologically determining the context of functional influence of single nodes. Conversely, the node robustness analysis allows topologically identifying the nodes having the highest functional influence on a specific node. A new Cytoscape plug-in calculating these measures was developed and applied to a protein-protein interaction network specifically regulating integrin activation in human primary leukocytes. Notably, the functional effects of compounds inhibiting important protein kinases, such as SRC, HCK, FGR and JAK2, are predicted by the interference and robustness analysis, are in agreement with previous studies and are confirmed by laboratory experiments. The interference and robustness notions can be applied to a variety of different contexts, including, for instance, the identification of potential side effects of drugs or the characterization of the consequences of genes deletion, duplication or of proteins degradation, opening new perspectives in biological network analysis.

摘要

越来越多的高通量实验产生的大型网络数据集需要开发工具来从生物网络中提取相关信息,开发能够检测生物网络拓扑性质的定性和定量变化的计算方法至关重要。我们引入了节点干扰和鲁棒性的概念,作为衡量网络中节点之间相互影响的度量。我们通过描述节点和节点组之间的拓扑关系来考察这些基于中心性的新度量的理论意义。节点干扰分析允许从拓扑上确定单个节点功能影响的上下文。相反,节点鲁棒性分析允许从拓扑上识别对特定节点具有最高功能影响的节点。开发了一个新的 Cytoscape 插件来计算这些度量,并将其应用于专门调节人原代白细胞整合素激活的蛋白质-蛋白质相互作用网络。值得注意的是,干扰和鲁棒性分析预测了抑制重要蛋白激酶(如 SRC、HCK、FGR 和 JAK2)的化合物的功能效应,与先前的研究一致,并通过实验室实验得到证实。干扰和鲁棒性的概念可以应用于各种不同的情况,例如,识别药物的潜在副作用,或描述基因缺失、复制或蛋白质降解的后果,为生物网络分析开辟了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e85c/3930642/a55a6bc830b1/pone.0088938.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验