Suzuki K, Petersen O H
Physiological Laboratory, University of Liverpool, United Kingdom.
Am J Physiol. 1988 Sep;255(3 Pt 1):G275-85. doi: 10.1152/ajpgi.1988.255.3.G275.
K+ channels in the plasma membrane of isolated guinea pig pancreatic acini were studied by patch-clamp single-channel and whole-cell current recording techniques. Three types of K+-permeable pores were found in excised patch experiments: Ca2+-activated nonselective cation channels with a unit conductance of approximately 25 pS that could be inhibited by ATP acting on the membrane inside, and two kinds of Ca2+- and voltage-activated K+-selective channels with unit conductances (in symmetrical K+-rich solutions) of about 200 and 30 pS, respectively. In intact cells, pentagastrin activation of currents through the 30 pS K+-selective pores was demonstrated. In these experiments pentagastrin was added to the bath solution and had no direct contact with the electrically isolated membrane area from which the single-channel currents were recorded, suggesting that the activation is mediated via an intracellular messenger system. Pentagastrin stimulation of voltage-gated K+ currents was also observed in whole-cell recording experiments. Results from these experiments suggest that in the stimulated condition the membrane electrical properties were dominated by the 30 pS K+-selective channels.