He Daojiang, Wu Yan
Department of Statistics, Anhui Normal University, Wuhu 241000, China.
ScientificWorldJournal. 2014 Jan 23;2014:231506. doi: 10.1155/2014/231506. eCollection 2014.
We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which is called the stochastic restricted principal components (SRPC) regression estimator. Necessary and sufficient conditions for the superiority of the SRPC estimator over the OME and the PCR estimator are derived in the sense of the mean squared error matrix criterion. Finally, we give a numerical example and a Monte Carlo study to illustrate the performance of the proposed estimator.
当回归系数存在随机线性约束时,我们提出一种新的估计量来应对线性模型中的多重共线性问题。新估计量是通过将普通混合估计量(OME)和主成分回归(PCR)估计量相结合构建而成的,称为随机约束主成分(SRPC)回归估计量。在均方误差矩阵准则的意义下,推导了SRPC估计量优于OME和PCR估计量的充要条件。最后,我们给出一个数值例子和蒙特卡罗研究来阐述所提估计量的性能。