Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA.
Department of Physics, Cornell University, Ithaca, New York 14853, USA.
J Chem Phys. 2014 Feb 28;140(8):084106. doi: 10.1063/1.4865107.
Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.
固液界面是许多现代技术的核心,也是许多材料模拟方法面临的挑战。对这类体系进行真实的第一性原理计算研究需要考虑溶剂效应。在这项工作中,我们将具有坚实理论基础的溶剂化模型应用到广泛使用的密度泛函代码 Vienna ab initio Software Package 中。溶剂化模型遵循联合密度泛函理论的框架。我们描述了这个框架、我们的算法和实现以及小分子体系的基准。我们应用该溶剂化模型来研究不同晶面的半导体和金属纳米晶体的表面能以及 SN2 反应途径。我们发现溶剂化降低了纳米晶体的表面能,特别是对半导体纳米晶体,同时增加了 SN2 反应的能量势垒。