Department of Chemistry and Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, Virginia 24061, USA.
J Chem Phys. 2014 Feb 28;140(8):084204. doi: 10.1063/1.4865834.
Ionic liquids (ILs) continue to show relevance in many fields, from battery electrolytes, to carbon capture, to advanced separations. These highly ion-dense fluids present unique challenges in understanding their electrochemical properties due to deviations in behavior from existing electrolyte theories. Here we present a novel characterization of ILs using electrophoretic NMR (ENMR) to determine separate cation and anion mobilities. This method uses an applied electric field coincident with a pulsed magnetic field gradient to encode the E-field driven flow into NMR signals for cations ((1)H) and anions ((19)F). We describe the detailed design of these experiments, including quantitative analysis of artifact mitigation and necessary control experiments. We then explore mobilities and diffusion coefficients for two representative ILs: 1-ethyl-3-methyl imidazolium tetrafluoroborate ([C2mim][BF4]) and 1-ethyl-3-methyl imidazolium trifluoromethanesulfonate ([C2mim][TfO]). We further use the individual ion mobilities to calculate the bulk net conductivity, which closely agrees with bulk conductivity measurements obtained using impedance spectroscopy. These observations represent the first reliable measurements of cation and anion mobilities in pure ILs, with errors of ±7%. We discuss this advanced experimental methodology in detail, as well as implications of these sensitive measurements for understanding conduction mechanisms in ion-dense electrolytes.
离子液体 (ILs) 在许多领域继续具有相关性,从电池电解质到碳捕集,再到先进的分离。这些高离子密度的流体在理解其电化学性质方面存在独特的挑战,因为它们的行为偏离了现有电解质理论。在这里,我们使用电泳 NMR (ENMR) 对 ILs 进行了新颖的表征,以确定阳离子和阴离子的单独迁移率。该方法使用与脉冲磁场梯度同时施加的电场,将 E 场驱动的流动编码为 NMR 信号,用于阳离子 ((1)H) 和阴离子 ((19)F)。我们描述了这些实验的详细设计,包括对伪影缓解的定量分析和必要的对照实验。然后,我们探索了两种代表性的 ILs 的迁移率和扩散系数:1-乙基-3-甲基咪唑四氟硼酸盐 ([C2mim][BF4]) 和 1-乙基-3-甲基咪唑三氟甲磺酸盐 ([C2mim][TfO])。我们进一步使用单个离子迁移率来计算体电导,这与使用阻抗谱获得的体电导测量值非常吻合。这些观察结果代表了在纯 ILs 中首次可靠测量阳离子和阴离子迁移率,误差为 ±7%。我们详细讨论了这种先进的实验方法,以及这些敏感测量对理解离子密集电解质中传导机制的影响。