Suppr超能文献

动态溶剂-阴离子网络中的非相关锂离子跳跃

Uncorrelated Lithium-Ion Hopping in a Dynamic Solvent-Anion Network.

作者信息

Yu Deyang, Troya Diego, Korovich Andrew G, Bostwick Joshua E, Colby Ralph H, Madsen Louis A

机构信息

Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States.

Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States.

出版信息

ACS Energy Lett. 2023 Mar 28;8(4):1944-1951. doi: 10.1021/acsenergylett.3c00454. eCollection 2023 Apr 14.

Abstract

Lithium batteries rely crucially on fast charge and mass transport of Li in the electrolyte. For liquid and polymer electrolytes with added lithium salts, Li couples to the counter-anion to form ionic clusters that produce inefficient Li transport and lead to Li dendrite formation. Quantification of Li transport in glycerol-salt electrolytes via NMR experiments and MD simulations reveals a surprising Li-hopping mechanism. The Li transference number, measured by ion-specific electrophoretic NMR, can reach 0.7, and Li diffusion does not correlate with nearby ion motions, even at high salt concentration. Glycerol's high density of hydroxyl groups increases ion dissociation and slows anion diffusion, while the close proximity of hydroxyls and anions lowers local energy barriers, facilitating Li hopping. This system represents a bridge between liquid and inorganic solid electrolytes, thus motivating new molecular designs for liquid and polymer electrolytes to enable the uncorrelated Li-hopping transport needed for fast-charging and all-solid-state batteries.

摘要

锂电池关键依赖于锂在电解质中的快速充电和质量传输。对于添加了锂盐的液体和聚合物电解质,锂与抗衡阴离子结合形成离子簇,导致锂传输效率低下并引发锂枝晶形成。通过核磁共振实验和分子动力学模拟对甘油盐电解质中锂传输的量化揭示了一种惊人的锂跳跃机制。通过离子特异性电泳核磁共振测量的锂迁移数可达0.7,并且即使在高盐浓度下,锂扩散也与附近离子的运动无关。甘油高密度的羟基增加了离子解离并减缓了阴离子扩散,而羟基和阴离子的紧密接近降低了局部能垒,促进了锂跳跃。该系统代表了液体和无机固体电解质之间的桥梁,从而推动了液体和聚合物电解质的新分子设计,以实现快速充电和全固态电池所需的不相关锂跳跃传输。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04aa/10112391/58e495c03ec3/nz3c00454_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验