Suppr超能文献

细胞库:为群体细胞分析数据的分析与协作提供一个分析平台。

Cytobank: providing an analytics platform for community cytometry data analysis and collaboration.

作者信息

Chen Tiffany J, Kotecha Nikesh

机构信息

Cytobank, Inc, Mountain View, CA, USA,

出版信息

Curr Top Microbiol Immunol. 2014;377:127-57. doi: 10.1007/82_2014_364.

Abstract

Cytometry is used extensively in clinical and laboratory settings to diagnose and track cell subsets in blood and tissue. High-throughput, single-cell approaches leveraging cytometry are developed and applied in the computational and systems biology communities by researchers, who seek to improve the diagnosis of human diseases, map the structures of cell signaling networks, and identify new cell types. Data analysis and management present a bottleneck in the flow of knowledge from bench to clinic. Multi-parameter flow and mass cytometry enable identification of signaling profiles of patient cell samples. Currently, this process is manual, requiring hours of work to summarize multi-dimensional data and translate these data for input into other analysis programs. In addition, the increase in the number and size of collaborative cytometry studies as well as the computational complexity of analytical tools require the ability to assemble sufficient and appropriately configured computing capacity on demand. There is a critical need for platforms that can be used by both clinical and basic researchers who routinely rely on cytometry. Recent advances provide a unique opportunity to facilitate collaboration and analysis and management of cytometry data. Specifically, advances in cloud computing and virtualization are enabling efficient use of large computing resources for analysis and backup. An example is Cytobank, a platform that allows researchers to annotate, analyze, and share results along with the underlying single-cell data.

摘要

细胞计数法在临床和实验室环境中被广泛用于诊断和追踪血液及组织中的细胞亚群。利用细胞计数法的高通量单细胞方法由研究人员在计算生物学和系统生物学领域开发并应用,他们致力于改善人类疾病的诊断、绘制细胞信号网络的结构以及识别新的细胞类型。数据分析和管理成为了从实验室到临床的知识流动瓶颈。多参数流式细胞术和质谱流式细胞术能够识别患者细胞样本的信号特征。目前,这个过程是手动的,需要花费数小时来汇总多维数据并将这些数据转化为可输入其他分析程序的形式。此外,流式细胞术协作研究的数量和规模不断增加,以及分析工具的计算复杂性,都要求能够按需组装足够且配置适当的计算能力。对于临床和基础研究人员(他们经常依赖细胞计数法)都可以使用的平台有着迫切需求。最近的进展为促进细胞计数法数据的协作、分析和管理提供了独特的机会。具体而言,云计算和虚拟化的进展使得能够高效利用大型计算资源进行分析和备份。一个例子是Cytobank平台,它允许研究人员对结果以及基础的单细胞数据进行注释、分析和共享。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验