Chapuis Coralie, Autran Sandra, Fortin Gilles, Simmers John, Thoby-Brisson Muriel
University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, 33076 Bordeaux, France.
Institut de Neurobiologie Alfred Fessard, Neurobiology and Development, CNRS UPR 3294, 91190 Gif sur Yvette, France.
J Physiol. 2014 May 15;592(10):2169-81. doi: 10.1113/jphysiol.2013.268730. Epub 2014 Mar 3.
In mammals, eupnoeic breathing is periodically interrupted by spontaneous augmented breaths (sighs) that include a larger-amplitude inspiratory effort, typically followed by a post-sigh apnoea. Previous in vitro studies in newborn rodents have demonstrated that the respiratory oscillator of the pre-Bötzinger complex (preBötC) can generate the distinct inspiratory motor patterns for both eupnoea- and sigh-related behaviour. During mouse embryonic development, the preBötC begins to generate eupnoeic rhythmicity at embryonic day (E) 15.5, but the network's ability to also generate sigh-like activity remains unexplored at prenatal stages. Using transverse brainstem slice preparations we monitored the neuronal population activity of the preBötC at different embryonic ages. Spontaneous sigh-like rhythmicity was found to emerge progressively, being expressed in 0/32 slices at E15.5, 7/30 at E16.5, 9/22 at E17.5 and 23/26 at E18.5. Calcium imaging showed that the preBötC cell population that participates in eupnoeic-like discharge was also active during fictive sighs. However, patch-clamp recordings revealed the existence of an additional small subset of neurons that fired exclusively during sigh activity. Changes in glycinergic inhibitory synaptic signalling, either by pharmacological blockade, functional perturbation or natural maturation of the chloride co-transporters KCC2 or NKCC1 selectively, and in an age-dependent manner, altered the bi-phasic nature of sigh bursts and their coordination with eupnoeic bursting, leading to the generation of an atypical monophasic sigh-related event. Together our results demonstrate that the developmental emergence of a sigh-generating capability occurs after the onset of eupnoeic rhythmogenesis and requires the proper maturation of chloride-mediated glycinergic synaptic transmission.
在哺乳动物中,平静呼吸会被自发性增强呼吸(叹息)周期性打断,叹息包括幅度更大的吸气动作,通常随后会出现叹息后呼吸暂停。此前对新生啮齿动物的体外研究表明,前包钦格复合体(preBötC)的呼吸振荡器能够产生与平静呼吸和叹息相关行为不同的吸气运动模式。在小鼠胚胎发育过程中,preBötC在胚胎第15.5天(E15.5)开始产生平静呼吸节律,但该神经网络在产前阶段产生类似叹息活动的能力仍未得到探索。我们使用横断脑干切片标本监测了不同胚胎年龄preBötC的神经元群体活动。发现自发性类似叹息的节律逐渐出现,在E15.5时,32个切片中有0个出现该节律,E16.5时30个切片中有7个出现,E17.5时22个切片中有9个出现,E18.5时26个切片中有23个出现。钙成像显示,参与类似平静呼吸放电的preBötC细胞群体在模拟叹息期间也有活动。然而,膜片钳记录显示存在一个额外的小神经元亚群,它们仅在叹息活动期间放电。通过药理学阻断、功能扰动或氯离子共转运体KCC2或NKCC1的自然成熟选择性地、以年龄依赖的方式改变甘氨酸能抑制性突触信号,会改变叹息爆发的双相性质及其与平静呼吸爆发的协调性,导致产生非典型的单相叹息相关事件。我们的研究结果共同表明,叹息产生能力的发育出现在平静呼吸节律发生之后,并且需要氯离子介导的甘氨酸能突触传递的适当成熟。