Suppr超能文献

基于高阶统计量的径向基函数网络增强肠鸣音。

Enhancing bowel sounds by using a higher order statistics-based radial basis function network.

出版信息

IEEE J Biomed Health Inform. 2013 May;17(3):675-80. doi: 10.1109/jbhi.2013.2244097.

Abstract

Auscultation of bowel sounds provides a noninvasive method to the diagnosis of gastrointestinal motility diseases. However, bowel sounds can be easily contaminated by background noises, and the frequency band of bowel sounds is easily overlapped with background noise. Therefore, it is difficult to enhance the noisy bowel sounds by using precise digital filters. In this study, a higher order statistics (HOS)-based radial basis function (RBF) network was proposed to enhance noisy bowel sounds. An HOS technique provides the ability of suppressing Gaussian noises and symmetrically distributed non-Gaussian noises due to their natural tolerance. Therefore, the influence of additional noises on the HOS-based learning algorithm can be reduced effectively. The simulated and experimental results show that the HOS-based RBF can exactly provide better performance for enhancing bowel sounds under stationary and nonstationary Gaussian noises. Therefore, the HOS-based RBF can be considered as a good approach for enhancing noisy bowel sounds.

摘要

肠鸣音听诊为胃肠道动力疾病的诊断提供了一种非侵入性方法。然而,肠鸣音很容易受到背景噪声的干扰,并且肠鸣音的频带很容易与背景噪声重叠。因此,很难通过使用精确的数字滤波器来增强嘈杂的肠鸣音。在这项研究中,提出了一种基于高阶统计量(HOS)的径向基函数(RBF)网络来增强嘈杂的肠鸣音。HOS 技术由于其天然的容忍性,提供了抑制高斯噪声和对称分布的非高斯噪声的能力。因此,可以有效地减少附加噪声对基于 HOS 的学习算法的影响。模拟和实验结果表明,基于 HOS 的 RBF 可以在平稳和非平稳高斯噪声下,非常准确地提供更好的增强肠鸣音的性能。因此,基于 HOS 的 RBF 可以被认为是增强嘈杂肠鸣音的一种很好的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验