Suppr超能文献

基于矩阵和张量分解的近无损多通道 EEG 压缩。

Near-lossless multichannel EEG compression based on matrix and tensor decompositions.

出版信息

IEEE J Biomed Health Inform. 2013 May;17(3):708-14. doi: 10.1109/titb.2012.2230012.

Abstract

A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of “lossy plus residual coding,” consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.

摘要

提出了一种基于矩阵/张量分解模型的新型多通道脑电图 (MC-EEG) 近无损压缩算法。MC-EEG 以合适的多向(多维)形式表示,以有效地同时利用时间和空间相关性。针对 MC-EEG 的多向形式的有效去相关,分析了几种矩阵/张量分解模型。基于“有损加残差编码”原理构建了一种压缩算法,该算法由有损层中的基于矩阵/张量分解的编码器和残差层中的算术编码组成。该方法保证了原始信号和重建信号之间可指定的最大绝对误差。该压缩算法应用于三个不同的头皮 EEG 数据集和一个颅内 EEG 数据集,每个数据集的采样率和分辨率都不同。与分别压缩单个通道相比,所提出的算法实现了有吸引力的压缩比。对于相似的压缩比,与类似的基于小波的容积式 MC-EEG 压缩算法相比,所提出的算法的平均误差低近五倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验