Suppr超能文献

用于长期脑电图的压缩数据存储:通过视觉分析进行验证

COMPRESSIVE DATA STORAGE FOR LONG-TERM EEG: VALIDATION BY VISUAL ANALYSIS.

作者信息

Kalamangalam Giridhar P, Venkatesan Subeikshanan, Bruzzone Maria-Jose, Wang Yue, Maciel Carolina B, Mitropanopoulos Sotiris, Cibula Jean, Patel Kajal, Babajani-Feremi Abbas

机构信息

Department of Neurology, University of Florida, Gainesville, FL, USA.

Wilder Center for Epilepsy Research, University of Florida, Gainesville, FL, USA.

出版信息

Clin Neurophysiol Pract. 2025 Aug 5;10:331-339. doi: 10.1016/j.cnp.2025.07.005. eCollection 2025.

Abstract

OBJECTIVES

Long-term EEG monitoring (LTM) in acute neurology generates massive data volumes. We investigated whether data-analytic techniques could reduce LTM data size yet conserve their visual diagnostic features.

METHODS

LTM exemplars from 50 patients underwent singular value decomposition (SVD). High-variance SVD components were transformed using discrete cosine transform (DCT), and significant elements run-length encoded. Two regimes were tested: (I) SVD and DCT compression ratio (CR) of 1.7 and 12, and (II) CR of 3.7 and 5.7; each achieved an overall CR of ≈20. Compressed data were reconstructed alongside uncompressed originals, to create a total of 200 recordings that were scored by two blinded reviewers. Scores of original and reconstructed data were statistically analyzed.

RESULTS

Score differences between original recordings were smaller than comparisons involving reconstructions using the first regime but did not differ significantly from reconstructions using the second regime.

CONCLUSIONS

Raw LTM EEG has sufficient redundancy to undergo extreme (20-fold) data compression without compromising visual diagnostic information. A balanced mix of SVD and DCT appears to be a suitable data-analytic pipeline for achieving such compression.

SIGNIFICANCE

Dimension reduction is a significant goal in managing big biomedical data. Our results suggest a pathway for archival of meaningful representations of entire LTM datasets. The latent space suggests new lines of data-scientific inquiry of the EEG in acute neurological illness.

摘要

目的

急性神经病学中的长期脑电图监测(LTM)会产生大量数据。我们研究了数据分析技术是否可以减小LTM数据大小,同时保留其视觉诊断特征。

方法

对50例患者的LTM样本进行奇异值分解(SVD)。使用离散余弦变换(DCT)对高方差SVD分量进行变换,并对重要元素进行游程编码。测试了两种方案:(I)SVD和DCT压缩率(CR)分别为1.7和12,以及(II)CR分别为3.7和5.7;每种方案的总体CR均约为20。将压缩后的数据与未压缩的原始数据一起重建,共创建200个记录,由两名盲法审阅者进行评分。对原始数据和重建数据的评分进行统计分析。

结果

原始记录之间的评分差异小于使用第一种方案重建的比较,但与使用第二种方案重建的差异无统计学意义。

结论

原始LTM脑电图具有足够的冗余度,可以进行极端(20倍)的数据压缩,而不会损害视觉诊断信息。SVD和DCT的平衡组合似乎是实现这种压缩的合适数据分析流程。

意义

降维是管理大型生物医学数据的一个重要目标。我们的结果为整个LTM数据集的有意义表示存档提供了一条途径。潜在空间为急性神经系统疾病中脑电图的数据科学新研究方向提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6951/12344260/c32c5c136446/gr1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验