The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.
School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
Biosens Bioelectron. 2014 Jul 15;57:262-8. doi: 10.1016/j.bios.2014.02.004. Epub 2014 Feb 13.
We demonstrate a simple new sensor design that exploits aptamer functionalized nanoparticles (NPs) to transduce the signal of aptamer receptors binding to target small molecules. An aptamer capable of binding to our target 17β-estradiol (E2) was isolated by SELEX with dissociation constant of 50 nM and tethered to the surface of carboxylated polystyrene NPs. Upon exposing the aptamer functionalized NPs to E2 in buffered water, we use dynamic light scattering (DLS) and resistive pulse sensing (TRPS) to observe a distinct reduction of the conjugated particle size and a less negative zeta potential, which can be correlated to the E2 concentration in the lower nanomolar range. The sensor showed similar affinity towards other hormones of the E2 steroidal family and excellent discrimination against potential non-steroidal interfering agents. The simplicity of the sensing scheme makes it readily applicable to other low molecular weight targets, as we further demonstrate using a known adenosine aptamer. In addition to sensing, our method shows potential to guide the synthetic evolution of aptamers with better binding affinity and specificity.
我们展示了一种简单的新型传感器设计,该设计利用适配体功能化纳米粒子(NPs)来转换适配体受体与目标小分子结合的信号。通过 SELEX 分离出一种能够与我们的 17β-雌二醇(E2)靶标结合的适配体,解离常数为 50 nM,并与羧化聚苯乙烯 NPs 表面连接。当将适配体功能化的 NPs 暴露于缓冲水中的 E2 时,我们使用动态光散射(DLS)和电阻脉冲感应(TRPS)观察到共轭颗粒尺寸明显减小,zeta 电位变得更负,这与纳摩尔范围内的 E2 浓度相关。该传感器对 E2 甾体家族的其他激素表现出相似的亲和力,并能极好地区分潜在的非甾体干扰剂。该传感方案的简单性使其易于应用于其他低分子量靶标,我们使用已知的腺苷适配体进一步证明了这一点。除了传感,我们的方法还有潜力指导具有更好结合亲和力和特异性的适配体的合成进化。