Suppr超能文献

Voltage clamping with single microelectrodes: comparison of the discontinuous mode and continuous mode using the Axoclamp 2A amplifier.

作者信息

Pun R Y

机构信息

Department of Physiology and Biophysics, University of Cincinnati, College of Medicine, OH 45267-0576.

出版信息

Mol Cell Biochem. 1988 Mar-Apr;80(1-2):109-20. doi: 10.1007/BF00231009.

Abstract

The voltage clamp technique is a powerful method for studying the physiology of excitable membrane. This technique has made possible the determination of ionic responses generated by activation of either receptor-mediated or voltage-dependent processes. The development of the whole-cell, 'tight-seal' voltage clamp method has allowed the analysis and examination of membrane physiology at the single cell level. The method allows the characterization of voltage-dependent ionic conductances both at the macroscopic (whole-cell) and at the microscopic (unitary conductance or single channel) level in cells less than 10 micron in diameter, a feat difficult to achieve with 'conventional' fine-tipped micropipettes. In this paper, several methologies used for culturing neuronal and non-neuronal cells in the laboratory are described. A comparison between the two modes of voltage clamp using blunt-tipped 'patch'-microelectrodes, the switching (discontinuous) and the non-switching (continuous) modes, of the Axoclamp-2A amplifier is made. Some results on membrane currents obtained from neuronal and non-neuronal cells using the single electrode whole-cell 'tight-seal' voltage clamp is illustrated. The possible existence of two inactivating K+ currents, one dependent on Ca++ the other is not, is discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验