Suppr超能文献

猫运动神经元中的电压敏感性外向电流。

Voltage-sensitive outward currents in cat motoneurones.

作者信息

Barrett E F, Barrett J N, Crill W E

出版信息

J Physiol. 1980 Jul;304:251-76. doi: 10.1113/jphysiol.1980.sp013323.

Abstract
  1. The soma membrane of cat motoneurones was voltage-clamped in vivo using intracellular current and voltage electrodes whose tips were separated by at least 5 micrometer. 2. Depolarization activates two separate, non-interacting K conductance systems whose rates of activation and decay differ by a factor of about 10. These conductances have a similar reversal potential, in the range of -6 to -21 mV (these and all subsequent voltages are expressed relative to the resting potential). Both conductances show linear 'instantaneous' current-voltage relationships. The steady-state magnitudes of both conductances increase with increasing depolarization. Neither conductance inactivates substantially during prolonged depolarizations. 3. The faster K conductance is similar to that described for squid axons and frog node. Activation begins at about +30 mV and is more than 90% complete within 5 msec of a depolarizing voltage step to +50 mV. Activation kinetics appear to be nonlinear. This fast K conductance contributes to the fast falling phase of the action potential. Following repolarization, this conductance decays with a time constant of 2-4 msec. 4. The slower K conductance activates during depolarizations of 10 mV or greater. The activation and decay of this conductance can be described by first-order exponential functions with time constants ranging from 20 to 50 msec. The slow K conductance underlies the prolonged hyperpolarization that follows motoneurone action potentials. Evidence from other studies suggests that this slow K conductance is regulated by intracellular Ca ions. 5. In addition to the two K conductance systems activated by depolarization, motoneurones exhibit another distinct conductance system that is activated by hyperpolarization. This third system has a reversal potential near the resting potential. Activation of this conductance during a hyperpolarizing voltage step can be fitted by a single exponential function with a time constant of 50-60 msec over the range -20 to -50 mV. This hyperpolarization-activated conductance accounts for some aspects of the anomalous rectification reported in cat motoneurones. 6. When the clamp circuit was turned off and the motoneurones were stimulated to discharge repetitively by depolarizing current steps, the apparent soma threshold voltage increased as the applied current (and discharge frequency) increased. 7. The basic features of the motoneurone action potential were reconstructed by simulations based on voltage clamp measurements of the voltage dependent conductance systems and previous measurements of passive membrane properties. These simulations assumed that the kinetics of the fast Na and K conductance systems in motoneurones can be described by equations of the same form as the Hodgkin-Huxley equations. These action potential reconstructions indicated that a major portion of the delayed depolarization following the action potential is attributable to capacitative currents from the dendrites...
摘要
  1. 在猫运动神经元的胞体膜上进行体内电压钳制,使用细胞内电流和电压电极,其尖端至少相隔5微米。2. 去极化激活两个独立、不相互作用的钾离子电导系统,它们的激活和衰减速率相差约10倍。这些电导具有相似的反转电位,范围在-6至-21毫伏之间(这些以及所有后续电压均相对于静息电位表示)。两种电导均呈现线性的“瞬时”电流-电压关系。两种电导的稳态幅度均随去极化程度的增加而增大。在长时间去极化过程中,两种电导均不会显著失活。3. 较快的钾离子电导与枪乌贼轴突和青蛙神经节中所描述的相似。激活始于约+30毫伏,在去极化电压阶跃至+50毫伏后的5毫秒内,激活程度超过90%。激活动力学似乎是非线性的。这种快速钾离子电导有助于动作电位的快速下降阶段。复极化后,这种电导以2至4毫秒的时间常数衰减。4. 较慢的钾离子电导在10毫伏或更大的去极化过程中被激活。这种电导的激活和衰减可用时间常数范围为20至50毫秒的一阶指数函数来描述。缓慢的钾离子电导是运动神经元动作电位之后长时间超极化的基础。其他研究的证据表明,这种缓慢的钾离子电导受细胞内钙离子调节。5. 除了由去极化激活的两个钾离子电导系统外,运动神经元还表现出另一种由超极化激活的独特电导系统。这第三个系统的反转电位接近静息电位。在-20至-50毫伏范围内,超极化电压阶跃期间这种电导的激活可用时间常数为50至60毫秒的单指数函数来拟合。这种超极化激活的电导解释了猫运动神经元中报道的反常整流的某些方面。6. 当关闭钳制电路并通过去极化电流阶跃刺激运动神经元使其重复放电时,表观胞体阈值电压随着施加电流(和放电频率)的增加而升高。7. 基于电压依赖性电导系统的电压钳测量以及先前对被动膜特性的测量,通过模拟重建了运动神经元动作电位的基本特征。这些模拟假设运动神经元中快速钠离子和钾离子电导系统的动力学可用与霍奇金-赫胥黎方程形式相同的方程来描述。这些动作电位重建表明,动作电位之后延迟去极化的主要部分可归因于来自树突的电容性电流……

相似文献

引用本文的文献

5
A computational model of motor neuron degeneration.运动神经元退化的计算模型。
Neuron. 2014 Aug 20;83(4):975-88. doi: 10.1016/j.neuron.2014.07.001. Epub 2014 Jul 31.
10
Cholinergic control of excitability of spinal motoneurones in the salamander.蝾螈脊髓运动神经元兴奋性的胆碱能控制
J Physiol. 2006 Feb 1;570(Pt 3):525-40. doi: 10.1113/jphysiol.2005.098970. Epub 2005 Nov 24.

本文引用的文献

8
Delayed depolarization in cat spinal motoneurons.猫脊髓运动神经元的延迟去极化
Exp Neurol. 1967 Jan;17(1):16-26. doi: 10.1016/0014-4886(67)90118-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验