Department of Cardiovascular Sciences, Clinical Cardiology, KULeuven, Leuven, Belgium.
Department of Cardiovascular Sciences, Imaging and Cardiovascular Dynamics, KULeuven, Leuven, Belgium.
Eur Heart J Cardiovasc Imaging. 2014 Aug;15(8):900-7. doi: 10.1093/ehjci/jeu019. Epub 2014 Mar 3.
Biological therapies for ischaemic heart disease require efficient, safe, and affordable intramyocardial delivery. Integration of multiple imaging modalities within the fluoroscopy framework can provide valuable information to guide these procedures. We compared an anatomo-electric method (LARCA) with a non-fluoroscopic electromechanical mapping system (NOGA(®)). LARCA integrates selective three-dimensional-rotational angiograms with biplane fluoroscopy. To identify the infarct region, we studied LARCA-fusion with pre-procedural magnetic resonance imaging (MRI), dedicated CT, or (18)F-FDG-PET/CT.
We induced myocardial infarction in 20 pigs by 90-min LAD occlusion. Six weeks later, we compared peri-infarct delivery accuracy of coloured fluospheres using sequential NOGA(®)- and LARCA-MRI-guided vs. LARCA-CT- and LARCA-(18)F-FDG-PET/CT-guided intramyocardial injections. MRI after 6 weeks revealed significant left ventricular (LV) functional impairment and remodelling (LVEF 31 ± 3%, LVEDV 178 ± 15 mL, infarct size 17 ± 2% LV mass). During NOGA(®)-procedures, three of five animals required DC-shock for major ventricular arrhythmias vs. one of ten during LARCA-procedures. Online procedure time was shorter for LARCA than NOGA(®) (77 ± 6 vs. 130 ± 3 min, P < 0.0001). Absolute distance of injection spots to the infarct border was similar for LARCA-MRI (4.8 ± 0.5 mm) and NOGA(®) (5.4 ± 0.5 mm). LARCA-CT-integration allowed closer approximation of the targeted border zone than LARCA-PET (4.0 ± 0.5 mm vs. 6.2 ± 0.6 mm, P < 0.05).
Three-dimensional -rotational angiography fused with multimodal imaging offers a new, cost-effective, and safe strategy to guide intramyocardial injections. Endoventricular procedure times and arrhythmias compare favourably to NOGA(®), without compromising injection accuracy. LARCA-based fusion imaging is a promising enabling technology for cardiac biological therapies.
缺血性心脏病的生物治疗需要高效、安全和经济实惠的心肌内递送。将多种成像模式集成在透视框架内可以提供有价值的信息来指导这些程序。我们比较了一种解剖电学法(LARCA)和一种非透视机电映射系统(NOGA(®))。LARCA 集成了选择性三维旋转血管造影与双平面透视。为了识别梗死区域,我们研究了 LARCA 与术前磁共振成像(MRI)、专用 CT 或(18)F-FDG-PET/CT 的融合。
我们通过 90 分钟的 LAD 闭塞诱导 20 头猪发生心肌梗死。6 周后,我们比较了使用顺序 NOGA(®)-和 LARCA-MRI 引导与 LARCA-CT-和 LARCA-(18)F-FDG-PET/CT 引导的心肌内注射的彩色荧光球的梗死周围递送准确性。6 周后的 MRI 显示左心室(LV)功能显著受损和重塑(LVEF 31 ± 3%,LVEDV 178 ± 15 毫升,梗死面积 17 ± 2%LV 质量)。在 NOGA(®)程序中,五头动物中有三头需要直流电休克治疗严重室性心律失常,而在 LARCA 程序中,十头动物中有一头。LARCA 程序的在线手术时间短于 NOGA(®)(77 ± 6 比 130 ± 3 分钟,P < 0.0001)。LARCA-MRI(4.8 ± 0.5 毫米)和 NOGA(®)(5.4 ± 0.5 毫米)的注射点与梗死边界的绝对距离相似。LARCA-CT 集成比 LARCA-PET 更接近目标边界区域(4.0 ± 0.5 毫米比 6.2 ± 0.6 毫米,P < 0.05)。
三维旋转血管造影与多模态成像融合为指导心肌内注射提供了一种新的、经济有效的、安全的策略。心室内手术时间和心律失常与 NOGA(®)相比具有优势,而不影响注射准确性。基于 LARCA 的融合成像技术是心脏生物治疗的一种很有前途的使能技术。