Wang Hsiao-Chan, Yu Ching-Ching, Liang Chien-Fu, Huang Li-De, Hwu Jih-Ru, Lin Chun-Cheng
Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013 (Taiwan).
Chembiochem. 2014 Apr 14;15(6):829-35. doi: 10.1002/cbic.201300800. Epub 2014 Mar 5.
We described a rapid site-selective protein immobilization strategy on glass slides and magnetic nanoparticles, at either the N or C terminus, by a 2-cyanobenzothiazole (CBT)-cysteine (Cys) condensation reaction. A terminal cysteine was generated at either terminus of a target protein by a combination of expressed protein ligation (EPL) and tobacco etch virus protease (TEVp) digestion, and was reacted with the CBT-solid support to immobilize the protein. According to microarray analysis, we found that glutathione S-transferase immobilized at the N terminus allowed higher substrate binding than for immobilization at the C terminus, whereas there were no differences in the activities of N- and C-terminally immobilized maltose-binding proteins. Moreover, immobilization of TEVp at the N terminus preserved higher activity than immobilization at the C terminus. The success of utilizing CBT-Cys condensation and the ease of constructing a terminal cysteine using EPL and TEVp digestion demonstrate that this method is feasible for site-selective protein immobilization on glass slides and nanoparticles. The orientation of a protein is crucial for its activity after immobilization, and this strategy provides a simple means to evaluate the preferred protein immobilization orientation on solid supports in the absence of clear structural information.
我们描述了一种通过2-氰基苯并噻唑(CBT)-半胱氨酸(Cys)缩合反应在载玻片和磁性纳米颗粒上,于蛋白质的N端或C端进行快速位点选择性蛋白质固定的策略。通过表达蛋白连接(EPL)和烟草蚀纹病毒蛋白酶(TEVp)消化相结合的方法,在目标蛋白质的任一末端生成一个末端半胱氨酸,并使其与CBT-固体支持物反应以固定蛋白质。根据微阵列分析,我们发现固定在N端的谷胱甘肽S-转移酶比固定在C端时具有更高的底物结合能力,而N端和C端固定的麦芽糖结合蛋白的活性没有差异。此外,将TEVp固定在N端比固定在C端保留了更高的活性。利用CBT-Cys缩合的成功以及使用EPL和TEVp消化构建末端半胱氨酸的简便性表明,该方法对于在载玻片和纳米颗粒上进行位点选择性蛋白质固定是可行的。蛋白质的取向对于其固定后的活性至关重要,并且该策略提供了一种简单的方法,可在缺乏明确结构信息的情况下评估在固体支持物上优选的蛋白质固定取向。