School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia,
Environ Sci Pollut Res Int. 2014 Jun;21(12):7567-77. doi: 10.1007/s11356-014-2697-y. Epub 2014 Mar 6.
This study aimed to predict monthly columnar ozone (O3) in Peninsular Malaysia by using data on the concentration of environmental pollutants. Data (2003-2008) on five atmospheric pollutant gases (CO2, O3, CH4, NO2, and H2O vapor) retrieved from the satellite Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) were employed to develop a model that predicts columnar ozone through multiple linear regression. In the entire period, the pollutants were highly correlated (R = 0.811 for the southwest monsoon, R = 0.803 for the northeast monsoon) with predicted columnar ozone. The results of the validation of columnar ozone with column ozone from SCIAMACHY showed a high correlation coefficient (R = 0.752-0.802), indicating the model's accuracy and efficiency. Statistical analysis was utilized to determine the effects of each atmospheric pollutant on columnar ozone. A model that can retrieve columnar ozone in Peninsular Malaysia was developed to provide air quality information. These results are encouraging and accurate and can be used in early warning of the population to comply with air quality standards.
本研究旨在通过环境污染物浓度数据预测马来西亚半岛的柱状臭氧(O3)。本研究使用卫星 Scanning Imaging Absorption Spectrometer for Atmospheric Chartography(SCIAMACHY)获取的 2003 年至 2008 年间的五种大气污染物(CO2、O3、CH4、NO2 和 H2O 蒸气)数据,通过多元线性回归建立了一个预测柱状臭氧的模型。在整个时期,污染物与预测的柱状臭氧高度相关(西南季风时 R=0.811,东北季风时 R=0.803)。利用 SCIAMACHY 的柱臭氧对柱臭氧进行验证,结果表明相关系数较高(R=0.752-0.802),表明模型的准确性和效率。利用统计分析确定了每种大气污染物对柱状臭氧的影响。建立了一个可以反演马来西亚半岛柱状臭氧的模型,为空气质量信息提供了支持。这些结果令人鼓舞且准确,可以用于对人群进行空气质量标准的预警。