University of California Irvine Diabetes Center and Department of Medicine (W.D., H.-B.L., Y.C., Y.-H.C., C.M.E., C.J., P.H.W.), University of California Irvine, California 92697; Department of Medicine (H.-B.L.), Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, 11217, Taiwan; and Departments of Biological Chemistry and Physiology and Biophysics (P.H.W.), University of California Irvine, California 92697.
Endocrinology. 2014 May;155(5):1618-28. doi: 10.1210/en.2013-1817. Epub 2014 Mar 6.
Our previous studies showed that insulin stimulated AKT1 translocation into mitochondria and modulated oxidative phosphorylation complex V in cardiac muscle. This raised the possibility that mitochondrial AKT1 may regulate glycolytic oxidative phosphorylation and mitochondrial function in cardiac muscle cells. The aims of this project were to study the effects of mitochondrial AKT1 signaling on cell survival in stressed cardiomyocytes, to define the effect of mitochondrial AKT1 signaling on glycolytic bioenergetics, and to identify mitochondrial targets of AKT1 signaling in cardiomyocytes. Mitochondrial AKT1 signaling played a protective role against apoptosis and necrosis during ischemia-reperfusion stress, suppressed mitochondrial calcium overload, and alleviated mitochondrial membrane depolarization. Activation of AKT1 signaling in mitochondria increased glucose uptake, enhanced respiration efficiency, reduced superoxide generation, and increased ATP production in the cardiomyocytes. Inhibition of mitochondrial AKT attenuated insulin response, indicating that insulin regulation of ATP production required mitochondrial AKT1 signaling. A proteomic approach was used to reveal 15 novel targets of AKT1 signaling in mitochondria, including pyruvate dehydrogenase complex (PDC). We have confirmed and characterized the association of AKT1 and PDC subunits and verified a stimulatory effect of mitochondrial AKT1 on the enzymatic activity of PDC. These findings suggested that AKT1 formed protein complexes with multiple mitochondrial proteins and improved mitochondrial function in stressed cardiomyocytes. The novel AKT1 signaling targets in mitochondria may become a resource for future metabolism research.
我们之前的研究表明,胰岛素刺激 AKT1 向线粒体转移,并调节心肌中的氧化磷酸化复合物 V。这就提出了一个可能性,即线粒体 AKT1 可能调节心肌细胞中的糖酵解氧化磷酸化和线粒体功能。本项目的目的是研究线粒体 AKT1 信号对应激心肌细胞存活的影响,确定线粒体 AKT1 信号对糖酵解生物能量的影响,并确定 AKT1 信号在心肌细胞中的线粒体靶标。线粒体 AKT1 信号在缺血再灌注应激期间对细胞凋亡和坏死起到保护作用,抑制线粒体钙超载,并减轻线粒体膜去极化。线粒体中 AKT1 信号的激活增加了葡萄糖摄取,提高了呼吸效率,减少了超氧化物的生成,并增加了心肌细胞中的 ATP 生成。线粒体 AKT 的抑制减弱了胰岛素的反应,表明胰岛素对 ATP 生成的调节需要线粒体 AKT1 信号。采用蛋白质组学方法揭示了线粒体中 AKT1 信号的 15 个新靶标,包括丙酮酸脱氢酶复合物(PDC)。我们已经证实并描述了 AKT1 和 PDC 亚基的关联,并验证了线粒体 AKT1 对 PDC 酶活性的刺激作用。这些发现表明 AKT1 与多个线粒体蛋白形成蛋白复合物,并改善了应激心肌细胞中的线粒体功能。线粒体中 AKT1 信号的新靶标可能成为未来代谢研究的资源。