Stancu Ilie-Cosmin, Ris Laurence, Vasconcelos Bruno, Marinangeli Claudia, Goeminne Léonie, Laporte Vincent, Haylani Laetitia E, Couturier Julien, Schakman Olivier, Gailly Philippe, Pierrot Nathalie, Kienlen-Campard Pascal, Octave Jean-Noël, Dewachter Ilse
Alzheimer Dementia Group and.
Department of Neurosciences, University of Mons, Mons, Belgium.
FASEB J. 2014 Jun;28(6):2620-31. doi: 10.1096/fj.13-246702. Epub 2014 Mar 6.
Tau alterations are now considered an executor of neuronal demise and cognitive dysfunction in Alzheimer's disease (AD). Mouse models combining amyloidosis and tauopathy and their parental counterparts are important tools to further investigate the interplay of abnormal amyloid-β (Aβ) and Tau species in pathogenesis, synaptic and neuronal dysfunction, and cognitive decline. Here, we crossed APP/PS1 mice with 5 early-onset familial AD mutations (5xFAD) and TauP301S (PS19) transgenic mice, denoted F(+)/T(+) mice, and phenotypically compared them to their respective parental strains, denoted F(+)/T(-) and F(-)/T(+) respectively, as controls. We found dramatically aggravated tauopathy (10-fold) in F(+)/T(+) mice compared to the parental F(-)/T(+) mice. In contrast, amyloidosis was unaltered compared to the parental F(+)/T(-) mice. Tauopathy was invariably and very robustly aggravated in hippocampal and cortical brain regions. Most important, F(+)/T(+) displayed aggravated cognitive deficits in a hippocampus-dependent spatial navigation task, compared to the parental F(+)/T(-) strain, while parental F(-)/T(+) mice did not display cognitive impairment. Basal synaptic transmission was impaired in F(+)/T(+) mice compared to nontransgenic mice and the parental strains (≥40%). Finally, F(+)/T(+) mice displayed a significant hippocampal atrophy (20%) compared to nontransgenic mice, in contrast to the parental strains. Our data indicate for the first time that pathological Aβ species (or APP/PS1) induced changes in Tau contribute to cognitive deficits correlating with synaptic deficits and hippocampal atrophy in an AD model. Our data lend support to the amyloid cascade hypothesis with a role of pathological Aβ species as initiator and pathological Tau species as executor.
目前认为,tau蛋白改变是阿尔茨海默病(AD)中神经元死亡和认知功能障碍的执行者。结合淀粉样变性和tau蛋白病的小鼠模型及其亲代对应模型是进一步研究异常淀粉样β蛋白(Aβ)和tau蛋白在发病机制、突触和神经元功能障碍以及认知衰退中相互作用的重要工具。在此,我们将携带5种早发性家族性AD突变的APP/PS1小鼠(5xFAD)与TauP301S(PS19)转基因小鼠杂交,得到F(+)/T(+)小鼠,并将其表型与各自的亲代品系(分别表示为F(+)/T(-)和F(-)/T(+))进行比较,作为对照。我们发现,与亲代F(-)/T(+)小鼠相比,F(+)/T(+)小鼠的tau蛋白病显著加重(约10倍)。相比之下,与亲代F(+)/T(-)小鼠相比,淀粉样变性没有改变。tau蛋白病在海马体和大脑皮质区域总是非常显著地加重。最重要的是,与亲代F(+)/T(-)品系相比,F(+)/T(+)小鼠在依赖海马体的空间导航任务中表现出更严重的认知缺陷,而亲代F(-)/T(+)小鼠没有表现出认知障碍。与非转基因小鼠和亲代品系相比,F(+)/T(+)小鼠的基础突触传递受损(≥40%)。最后,与非转基因小鼠相比,F(+)/T(+)小鼠表现出显著的海马萎缩(约20%),而亲代品系则没有。我们的数据首次表明,病理性Aβ物种(或APP/PS1)诱导的tau蛋白变化导致了AD模型中与突触缺陷和海马萎缩相关的认知缺陷。我们的数据支持淀粉样蛋白级联假说,即病理性Aβ物种起启动作用,病理性tau蛋白物种起执行者作用。