Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Cellectis Bioresearch, Gothenburg, Sweden; Division of Biotechnology/IFM, Linköping University, Linköping, Sweden; Cell Therapy Catapult Limited, London, United Kingdom.
Stem Cells Transl Med. 2014 Apr;3(4):433-47. doi: 10.5966/sctm.2013-0138. Epub 2014 Mar 6.
Human induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine; however, clinical applications of iPSCs are restricted because of undesired genomic modifications associated with most reprogramming protocols. We show, for the first time, that chondrocytes from autologous chondrocyte implantation (ACI) donors can be efficiently reprogrammed into iPSCs using a nonintegrating method based on mRNA delivery, resulting in footprint-free iPSCs (no genome-sequence modifications), devoid of viral factors or remaining reprogramming molecules. The search for universal allogeneic cell sources for the ACI regenerative treatment has been difficult because making chondrocytes with high matrix-forming capacity from pluripotent human embryonic stem cells has proven challenging and human mesenchymal stem cells have a predisposition to form hypertrophic cartilage and bone. We show that chondrocyte-derived iPSCs can be redifferentiated in vitro into cartilage matrix-producing cells better than fibroblast-derived iPSCs and on par with the donor chondrocytes, suggesting the existence of a differentiation bias toward the somatic cell origin and making chondrocyte-derived iPSCs a promising candidate universal cell source for ACI. Whole-genome single nucleotide polymorphism array and karyotyping were used to verify the genomic integrity and stability of the established iPSC lines. Our results suggest that RNA-based technology eliminates the risk of genomic integrations or aberrations, an important step toward a clinical-grade cell source for regenerative medicine such as treatment of cartilage defects and osteoarthritis.
人类诱导多能干细胞(iPSCs)是再生医学的潜在细胞来源;然而,由于大多数重编程方案相关的非期望基因组修饰,iPSCs 的临床应用受到限制。我们首次表明,使用基于 mRNA 递送的非整合方法,从自体软骨细胞移植(ACI)供体的软骨细胞可以有效地重编程为 iPSCs,从而产生无足迹的 iPSCs(没有基因组序列修饰),没有病毒因子或残留的重编程分子。由于从多能人胚胎干细胞中制造具有高基质形成能力的软骨细胞已被证明具有挑战性,并且人骨髓间充质干细胞容易形成肥大软骨和骨,因此寻找用于 ACI 再生治疗的通用同种异体细胞来源一直很困难。我们表明,与成纤维细胞来源的 iPSCs 相比,软骨细胞来源的 iPSCs 可以更好地在体外重新分化为产生软骨基质的细胞,与供体软骨细胞相当,这表明存在向体细胞起源的分化偏向,使软骨细胞来源的 iPSCs 成为 ACI 的有前途的通用细胞来源。全基因组单核苷酸多态性阵列和核型分析用于验证已建立的 iPSC 系的基因组完整性和稳定性。我们的结果表明,基于 RNA 的技术消除了基因组整合或异常的风险,这是朝着再生医学临床级细胞来源迈出的重要一步,例如治疗软骨缺陷和骨关节炎。