Suppr超能文献

方差分解:一种能够实现分析回收率和浓度估计精度的策略性改进的工具,这些回收率和浓度估计与微生物计数方法相关。

Variance decomposition: a tool enabling strategic improvement of the precision of analytical recovery and concentration estimates associated with microorganism enumeration methods.

机构信息

Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

出版信息

Water Res. 2014 May 15;55:203-14. doi: 10.1016/j.watres.2014.02.015. Epub 2014 Feb 15.

Abstract

Concentrations of particular types of microorganisms are commonly measured in various waters, yet the accuracy and precision of reported microorganism concentration values are often questioned due to the imperfect analytical recovery of quantitative microbiological methods and the considerable variation among fully replicated measurements. The random error in analytical recovery estimates and unbiased concentration estimates may be attributable to several sources, and knowing the relative contribution from each source can facilitate strategic design of experiments to yield more precise data or provide an acceptable level of information with fewer data. Herein, variance decomposition using the law of total variance is applied to previously published probabilistic models to explore the relative contributions of various sources of random error and to develop tools to aid experimental design. This work focuses upon enumeration-based methods with imperfect analytical recovery (such as enumeration of Cryptosporidium oocysts), but the results also yield insights about plating methods and microbial methods in general. Using two hypothetical analytical recovery profiles, the variance decomposition method is used to explore 1) the design of an experiment to quantify variation in analytical recovery (including the size and precision of seeding suspensions and the number of samples), and 2) the design of an experiment to estimate a single microorganism concentration (including sample volume, effects of improving analytical recovery, and replication). In one illustrative example, a strategically designed analytical recovery experiment with 6 seeded samples would provide as much information as an alternative experiment with 15 seeded samples. Several examples of diminishing returns are illustrated to show that efforts to reduce error in analytical recovery and concentration estimates can have negligible effect if they are directed at trivial error sources.

摘要

特定类型微生物的浓度通常在各种水中进行测量,但由于定量微生物方法的分析回收率不完美以及完全复制测量之间存在很大差异,报告的微生物浓度值的准确性和精密度常常受到质疑。分析回收率估计和无偏浓度估计中的随机误差可能归因于多个来源,了解每个来源的相对贡献可以有助于设计实验以获得更精确的数据,或者在数据较少的情况下提供可接受的信息量。本文应用总方差定律的方差分解,将先前发表的概率模型应用于探索各种随机误差源的相对贡献,并开发工具来辅助实验设计。这项工作侧重于具有不完美分析回收率的基于枚举的方法(例如,隐孢子虫卵囊的枚举),但结果也为平板法和一般微生物方法提供了一些见解。使用两种假设的分析回收率曲线,方差分解方法用于探讨 1)量化分析回收率变化的实验设计(包括接种悬浮液的大小和精度以及样品数量),以及 2)估计单个微生物浓度的实验设计(包括样品体积、分析回收率提高的影响和复制)。在一个说明性示例中,具有 6 个接种样本的战略性设计分析回收率实验可以提供与具有 15 个接种样本的替代实验相同的信息量。还举例说明了几个收益递减的情况,表明如果将减少分析回收率和浓度估计误差的工作针对微不足道的误差源,那么它们可能不会产生明显效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验