Suppr超能文献

定量微生物风险评估(QMRA)和决策:我们是否正确处理与病原体浓度数据相关的测量误差?

QMRA and decision-making: are we handling measurement errors associated with pathogen concentration data correctly?

机构信息

Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada.

出版信息

Water Res. 2011 Jan;45(2):427-38. doi: 10.1016/j.watres.2010.08.042. Epub 2010 Sep 28.

Abstract

Knowledge of the variability in pathogen or indicator concentrations over time at a particular location (e.g. in drinking water sources) is essential in implementation of concentration-based regulations and in quantitative microbial risk assessment. Microbial enumeration methods, however, are known to yield highly variable counts (even among replicates) and some methods are prone to substantial losses (i.e. only a fraction of the target microorganisms in a sample are observed). Consequently, estimated microorganism concentrations may be biased and only a fraction of the variability that is observed in temporally distributed concentration estimates is due to variability in concentration itself. These issues have often been ignored in the past, and approaches to integrate knowledge about the measurement error associated with enumeration methods into decisions have not been standardized. Here, an existing model that describes variability in microorganism counts as a function of sample volume and the analytical recovery of the enumeration method is expanded to include temporal concentration variability and sample-specific recovery information. This model is used to demonstrate that microorganism counts and analytical recovery are not independent (as has often been assumed), even if the correlation is obscured by other sources of variability in the data. It is also used as an experimental design tool to evaluate strategies that may yield more accurate concentration estimates. Finally, the model is implemented in a Bayesian framework (with a Gibbs sampling algorithm) to quantify temporal concentration variability with appropriate consideration of measurement errors in the data and the analytical recovery of the enumeration method. We demonstrate by simulation that this statistical approach facilitates risk analyses that appropriately model variability in microorganism concentrations given the available data and that it enables decisions based on quantitative measures of uncertainty.

摘要

了解特定地点(例如饮用水源)的病原体或指示物浓度随时间的变化是实施基于浓度的法规和定量微生物风险评估的关键。然而,微生物计数方法已知会产生高度可变的计数(即使在重复中也是如此),并且一些方法容易出现大量损失(即,样品中只有目标微生物的一部分被观察到)。因此,估计的微生物浓度可能存在偏差,并且在时间分布的浓度估计中观察到的可变性只有一部分归因于浓度本身的可变性。过去,这些问题经常被忽视,并且尚未将与计数方法相关的测量误差相关的知识纳入决策的整合方法标准化。在这里,我们扩展了一个现有的模型,该模型将微生物计数的可变性描述为样本体积和计数方法的分析回收率的函数,以包括时间浓度可变性和样品特异性回收率信息。该模型用于演示即使数据中的其他变异性源掩盖了相关性,微生物计数和分析回收率也不是独立的(如通常假设的那样)。它还被用作实验设计工具来评估可能产生更准确浓度估计的策略。最后,该模型在贝叶斯框架(使用 Gibbs 抽样算法)中实现,以适当考虑数据中的测量误差和计数方法的分析回收率来量化时间浓度可变性。我们通过模拟表明,这种统计方法有助于进行风险分析,使我们能够根据可用数据适当模拟微生物浓度的可变性,并能够基于不确定性的定量度量做出决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验