Suppr超能文献

粒子和微生物计数数据:实现定量严谨性和明智解释。

Particle and microorganism enumeration data: enabling quantitative rigor and judicious interpretation.

机构信息

Department of Civil and Environmental Engineering and Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

出版信息

Environ Sci Technol. 2010 Mar 1;44(5):1720-7. doi: 10.1021/es902382a.

Abstract

Many of the methods routinely used to quantify microscopic discrete particles and microorganisms are based on enumeration, yet these methods are often known to yield highly variable results. This variability arises from sampling error and variations in analytical recovery (i.e., losses during sample processing and errors in counting), and leads to considerable uncertainty in particle concentration or log(10)-reduction estimates. Conventional statistical analysis techniques based on the t-distribution are often inappropriate, however, because the data must be corrected for mean analytical recovery and may not be normally distributed with equal variance. Furthermore, these statistical approaches do not include subjective knowledge about the stochastic processes involved in enumeration. Here we develop two probabilistic models to account for the random errors in enumeration data, with emphasis on sampling error assumptions, nonconstant analytical recovery, and discussion of counting errors. These models are implemented using Bayes' theorem to yield posterior distributions (by numerical integration or Gibbs sampling) that completely quantify the uncertainty in particle concentration or log(10)-reduction given the experimental data and parameters that describe variability in analytical recovery. The presented approach can easily be implemented to correctly and rigorously analyze single or replicate (bio)particle enumeration data.

摘要

许多用于定量微观离散颗粒和微生物的常规方法都是基于计数的,但这些方法通常会产生高度可变的结果。这种可变性源于采样误差和分析回收率的变化(即在样品处理过程中的损失和计数误差),导致颗粒浓度或对数(10)减少估计值存在很大的不确定性。然而,基于 t 分布的传统统计分析技术通常是不适用的,因为数据必须进行平均分析回收率校正,并且可能不符合正态分布和方差相等。此外,这些统计方法没有包括关于计数过程中随机过程的主观知识。在这里,我们开发了两种概率模型来解释计数数据中的随机误差,重点讨论了采样误差假设、非恒定分析回收率以及计数误差。这些模型通过贝叶斯定理来实现,以产生后验分布(通过数值积分或 Gibbs 抽样),该分布完全量化了在实验数据和描述分析回收率变化的参数下,颗粒浓度或对数(10)减少的不确定性。所提出的方法可以轻松地用于正确和严格地分析单个或重复(生物)颗粒计数数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验