Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
Nucleic Acids Res. 2014 May;42(9):e76. doi: 10.1093/nar/gku182. Epub 2014 Mar 7.
Aberrant microRNA (miRNA) expression is implicated in tumorigenesis. The underlying mechanisms are unclear because the regulations of each miRNA on potentially hundreds of mRNAs are sample specific. We describe a novel approach to infer Probabilistic MiRNA-mRNA Interaction Signature ('ProMISe') from a single pair of miRNA-mRNA expression profile. Our model considers mRNA and miRNA competition as a probabilistic function of the expressed seeds (matches). To demonstrate ProMISe, we extensively exploited The Cancer Genome Atlas data. As a target predictor, ProMISe identifies more confidence/validated targets than other methods. Importantly, ProMISe confers higher cancer diagnostic power than using expression profiles alone. Gene set enrichment analysis on averaged ProMISe uniquely revealed respective target enrichments of oncomirs miR-21 and 145 in glioblastoma and ovarian cancers. Moreover, comparing matched breast (BRCA) and thyroid (THCA) tumor/normal samples uncovered thousands of tumor-related interactions. For example, ProMISe-BRCA network involves miR-155/183/21, which exhibits higher ProMISe coupled with coherently higher miRNA expression and lower target expression; oncomirs miR-221/222 in the ProMISe-THCA network engage with many downregulated target genes. Together, our probabilistic approach of integrating expression and sequence scores establishes a functional link between the aberrant miRNA and mRNA expression, which was previously under-appreciated due to the methodological differences.
异常的 microRNA (miRNA) 表达与肿瘤发生有关。潜在机制尚不清楚,因为每个 miRNA 对潜在数百个 mRNA 的调控是特定于样本的。我们描述了一种从单个 miRNA-mRNA 表达谱对推断 Probabilistic miRNA-mRNA Interaction Signature('ProMISe')的新方法。我们的模型将 mRNA 和 miRNA 竞争视为表达种子(匹配)的概率函数。为了证明 ProMISe,我们广泛利用了癌症基因组图谱数据。作为一个靶标预测器,ProMISe 比其他方法识别出更多有信心/验证的靶标。重要的是,与仅使用表达谱相比,ProMISe 赋予了更高的癌症诊断能力。平均 ProMISe 的基因集富集分析独特地揭示了致瘤 miR-21 和 145 在神经胶质瘤和卵巢癌中的各自靶标富集。此外,比较匹配的乳腺癌(BRCA)和甲状腺癌(THCA)肿瘤/正常样本揭示了数千个与肿瘤相关的相互作用。例如,ProMISe-BRCA 网络涉及 miR-155/183/21,其具有更高的 ProMISe 耦合,同时具有更高的 miRNA 表达和更低的靶基因表达;ProMISe-THCA 网络中的致癌 mir-221/222 与许多下调的靶基因相互作用。总之,我们整合表达和序列分数的概率方法建立了异常 miRNA 和 mRNA 表达之间的功能联系,这在以前由于方法学差异而被低估了。