Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157.
Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157.
J Biol Chem. 2014 Apr 18;289(16):11556-11565. doi: 10.1074/jbc.M114.559252. Epub 2014 Mar 9.
TREX1 is a 3'-deoxyribonuclease that degrades single- and double-stranded DNA (ssDNA and dsDNA) to prevent inappropriate nucleic acid-mediated immune activation. More than 40 different disease-causing TREX1 mutations have been identified exhibiting dominant and recessive genetic phenotypes in a spectrum of autoimmune disorders. Mutations in TREX1 at positions Asp-18 and Asp-200 to His and Asn exhibit dominant autoimmune phenotypes associated with the clinical disorders familial chilblain lupus and Aicardi-Goutières syndrome. Our previous biochemical studies showed that the TREX1 dominant autoimmune disease phenotype depends upon an intact DNA-binding process coupled with dysfunctional active site chemistry. Studies here show that the TREX1 Arg-62 residues extend across the dimer interface into the active site of the opposing protomer to coordinate substrate DNA and to affect catalysis in the opposing protomer. The TREX1(R62A/R62A) homodimer exhibits ∼50-fold reduced ssDNA and dsDNA degradation activities relative to TREX1(WT). The TREX1 D18H, D18N, D200H, and D200N dominant mutant enzymes were prepared as compound heterodimers with the TREX1 R62A substitution in the opposing protomer. The TREX1(D18H/R62A), TREX1(D18N/R62A), TREX1(D200H/R62A), and TREX1(D200N/R62A) compound heterodimers exhibit higher levels of ss- and dsDNA degradation activities than the homodimers demonstrating the requirement for TREX1 Arg-62 residues to provide necessary structural elements for full catalytic activity in the opposing TREX1 protomer. This concept is further supported by the loss of dominant negative effects in the TREX1 D18H, D18N, D200H, and D200N compound heterodimers. These data provide compelling evidence for the required TREX1 dimeric structure for full catalytic function.
TREX1 是一种 3'-脱氧核糖核酸酶,可降解单链和双链 DNA(ssDNA 和 dsDNA),以防止不适当的核酸介导的免疫激活。已经鉴定出超过 40 种不同的导致疾病的 TREX1 突变,这些突变在一系列自身免疫性疾病中表现出显性和隐性遗传表型。TREX1 位置 Asp-18 和 Asp-200 突变为 His 和 Asn 的突变表现出与家族性寒冷性蕈样红斑狼疮和 Aicardi-Goutières 综合征相关的显性自身免疫表型。我们之前的生化研究表明,TREX1 显性自身免疫疾病表型取决于与功能失调的活性位点化学结合的完整 DNA 结合过程。研究表明,TREX1 Arg-62 残基延伸穿过二聚体界面进入对面亚基的活性位点,以协调底物 DNA 并影响对面亚基的催化。TREX1(R62A/R62A) 同源二聚体相对于 TREX1(WT),ssDNA 和 dsDNA 降解活性降低约 50 倍。TREX1 D18H、D18N、D200H 和 D200N 显性突变酶作为与对面亚基 TREX1 R62A 取代的复合杂合二聚体制备。TREX1(D18H/R62A)、TREX1(D18N/R62A)、TREX1(D200H/R62A) 和 TREX1(D200N/R62A) 复合杂合二聚体表现出更高水平的 ss-和 dsDNA 降解活性,高于同源二聚体,表明 TREX1 Arg-62 残基提供必要的结构元件对于对面 TREX1 亚基的完全催化活性是必需的。这一概念进一步得到了 TREX1 D18H、D18N、D200H 和 D200N 复合杂合二聚体中显性负效应丧失的支持。这些数据为 TREX1 二聚体结构对于完全催化功能提供了令人信服的证据。