Suppr超能文献

刺激持续时间和多样性并不会改变上级类别表征的优势:动物比鸟类先被看到。

Stimulus duration and diversity do not reverse the advantage for superordinate-level representations: the animal is seen before the bird.

作者信息

Poncet Marlène, Fabre-Thorpe Michèle

机构信息

Centre de Recherche Cerveau et Cognition, UPS, Université de Toulouse, Toulouse, France; CNRS CERCO UMR 5549, Pavillon Baudot CHU Purpan, BP 25202, 31052, Toulouse Cedex, France.

出版信息

Eur J Neurosci. 2014 May;39(9):1508-16. doi: 10.1111/ejn.12513. Epub 2014 Mar 12.

Abstract

Basic-level categorization has long been thought to be the entry level for object representations. However, this view is now challenged. In particular, Macé et al. [M.J.-M. Macé et al. (2009) PLoS One, 4, e5927] showed that basic-level categorization (such as 'bird') requires a longer processing time than superordinate-level categorization (such as 'animal'). It has been argued that this result depends on the brief stimulus presentation times used in their study, which would degrade the visual information available. Here, we used a go/no-go paradigm to test whether the superordinate-level advantage could be observed with longer stimulus durations, and also investigated the impact of manipulating the target and distractor set heterogeneity. Our results clearly show that presentation time had no effect on categorization performance. Both target and distractor diversity influenced performance, but basic-level categories were never accessed faster or with higher accuracy than superordinate-level categories. These results argue in favor of coarse to fine visual processing to access perceptual representations.

摘要

长期以来,基本层次分类一直被认为是物体表征的入门级别。然而,这一观点现在受到了挑战。特别是,Macé等人[M.J.-M. Macé等人(2009年),《公共科学图书馆·综合》,4,e5927]表明,基本层次分类(如“鸟”)比上级层次分类(如“动物”)需要更长的处理时间。有人认为,这一结果取决于他们研究中使用的短暂刺激呈现时间,这会降低可用的视觉信息。在这里,我们使用了一个go/no-go范式来测试在更长的刺激持续时间下是否能观察到上级层次优势,并且还研究了操纵目标和干扰物集异质性的影响。我们的结果清楚地表明,呈现时间对分类性能没有影响。目标和干扰物的多样性都影响性能,但基本层次类别从未比上级层次类别更快或更准确地被识别。这些结果支持从粗略到精细的视觉处理以获取感知表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验