Unocic Raymond R, Sacci Robert L, Brown Gilbert M, Veith Gabriel M, Dudney Nancy J, More Karren L, Walden Franklin S, Gardiner Daniel S, Damiano John, Nackashi David P
1 Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, USA.
2 Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA.
Microsc Microanal. 2014 Apr;20(2):452-61. doi: 10.1017/S1431927614000166. Epub 2014 Mar 11.
Insight into dynamic electrochemical processes can be obtained with in situ electrochemical-scanning/transmission electron microscopy (ec-S/TEM), a technique that utilizes microfluidic electrochemical cells to characterize electrochemical processes with S/TEM imaging, diffraction, or spectroscopy. The microfluidic electrochemical cell is composed of microfabricated devices with glassy carbon and platinum microband electrodes in a three-electrode cell configuration. To establish the validity of this method for quantitative in situ electrochemistry research, cyclic voltammetry (CV), choronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) were performed using a standard one electron transfer redox couple [Fe(CN)6]3-/4--based electrolyte. Established relationships of the electrode geometry and microfluidic conditions were fitted with CV and chronoamperometic measurements of analyte diffusion coefficients and were found to agree with well-accepted values that are on the order of 10-5 cm2/s. Influence of the electron beam on electrochemical measurements was found to be negligible during CV scans where the current profile varied only within a few nA with the electron beam on and off, which is well within the hysteresis between multiple CV scans. The combination of experimental results provides a validation that quantitative electrochemistry experiments can be performed with these small-scale microfluidic electrochemical cells provided that accurate geometrical electrode configurations, diffusion boundary layers, and microfluidic conditions are accounted for.
通过原位电化学扫描/透射电子显微镜(ec-S/TEM)可以深入了解动态电化学过程,该技术利用微流控电化学池,通过S/TEM成像、衍射或光谱来表征电化学过程。微流控电化学池由微加工装置组成,在三电极池配置中具有玻碳和铂微带电极。为了确定该方法在定量原位电化学研究中的有效性,使用基于标准单电子转移氧化还原对[Fe(CN)6]3-/4-的电解质进行循环伏安法(CV)、计时电流法(CA)和电化学阻抗谱(EIS)。通过CV和计时电流法测量分析物扩散系数,拟合了电极几何形状和微流控条件之间已建立的关系,发现与公认的约10-5 cm2/s量级的值一致。在CV扫描期间,发现电子束对电化学测量的影响可以忽略不计,在电子束开启和关闭时,电流分布仅在几纳安范围内变化,这完全在多次CV扫描之间的滞后范围内。实验结果的结合提供了一个验证,即只要考虑准确的几何电极配置、扩散边界层和微流控条件,就可以使用这些小型微流控电化学池进行定量电化学实验。