Suppr超能文献

Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: probing chemical composition of D2O ice beneath a H2O ice layer.

作者信息

Yang Rui, Gudipati Murthy S

机构信息

Science Division, Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 183-301, 4800 Oak Grove Drive, Pasadena, California 91109, USA.

出版信息

J Chem Phys. 2014 Mar 14;140(10):104202. doi: 10.1063/1.4867279.

Abstract

In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D2O ices by novel infrared (IR) laser ablation of a layered non-absorbing D2O ice (spectator) containing the analytes and an ablation-active IR-absorbing H2O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H2O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D2O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D2O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H2O molecules in the shockwave. We call this "shockwave mediated surface resonance enhanced subsurface ablation" technique as "two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers." This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes--ablation and ionization. This new technique can thus be potentially employed to undertake in situ analysis of materials imbedded in diverse media, such as cryogenic ices, biological samples, tissues, minerals, etc., by covered with an IR-absorbing laser ablation medium and study the chemical composition and reaction pathways of the analyte in its natural surroundings.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验