Suppr超能文献

剪切变稀聚合物溶液的中尺度建模。

Mesoscale modeling of shear-thinning polymer solutions.

作者信息

Santos de Oliveira I S, Fitzgerald B W, den Otter W K, Briels W J

机构信息

Computational Biophysics, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.

出版信息

J Chem Phys. 2014 Mar 14;140(10):104903. doi: 10.1063/1.4867787.

Abstract

We simulate the linear and nonlinear rheology of two different viscoelastic polymer solutions, a polyisobutylene solution in pristane and an aqueous solution of hydroxypropylcellulose, using a highly coarse-grained approach known as Responsive Particle Dynamics (RaPiD) model. In RaPiD, each polymer has originally been depicted as a spherical particle with the effects of the eliminated degrees of freedom accounted for by an appropriate free energy and transient pairwise forces. Motivated by the inability of this spherical particle representation to entirely capture the nonlinear rheology of both fluids, we extended the RaPiD model by introducing a deformable particle capable of elongation. A Finite-Extensible Non-Linear Elastic potential provides a free energy penalty for particle elongation. Upon disentangling, this deformability allows more time for particles to re-entangle with neighbouring particles. We show this process to be integral towards recovering the experimental nonlinear rheology, obtaining excellent agreement. We show that the nonlinear rheology is crucially dependent upon the maximum elongation and less so on the elasticity of the particles. In addition, the description of the linear rheology has been retained in the process.

摘要

我们使用一种称为响应粒子动力学(RaPiD)模型的高度粗粒度方法,模拟了两种不同粘弹性聚合物溶液的线性和非线性流变学,一种是异丁烯在异辛烷中的溶液,另一种是羟丙基纤维素的水溶液。在RaPiD中,每个聚合物最初被描绘为一个球形粒子,消除的自由度的影响由适当的自由能和瞬态成对力来解释。由于这种球形粒子表示法无法完全捕捉两种流体的非线性流变学,我们通过引入一个能够伸长的可变形粒子来扩展RaPiD模型。有限可伸长非线性弹性势为粒子伸长提供自由能惩罚。在解缠时,这种可变形性使粒子有更多时间与相邻粒子重新缠结。我们表明这个过程对于恢复实验非线性流变学是不可或缺的,获得了极好的一致性。我们表明非线性流变学关键取决于最大伸长,而对粒子的弹性依赖性较小。此外,在这个过程中保留了线性流变学的描述。

相似文献

3
Deformation and breakup of viscoelastic droplets in confined shear flow.受限剪切流中粘弹性液滴的变形与破裂
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):023305. doi: 10.1103/PhysRevE.90.023305. Epub 2014 Aug 22.
4
Alignment of particles in sheared viscoelastic fluids.剪切黏弹性流体中粒子的排列。
J Chem Phys. 2011 Sep 14;135(10):104902. doi: 10.1063/1.3633701.
5
Viscoelasticity of model interphase chromosomes.模型相间染色体的粘弹性。
J Chem Phys. 2014 Dec 28;141(24):245101. doi: 10.1063/1.4903996.
6
Thermodynamically consistent fluid particle model for viscoelastic flows.用于粘弹性流动的热力学一致流体粒子模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 1):041504. doi: 10.1103/PhysRevE.68.041504. Epub 2003 Oct 23.
10
Microrheology and dynamics of an associative polymer.缔合聚合物的微观流变学与动力学
Eur Phys J E Soft Matter. 2010 Jan;31(1):25-35. doi: 10.1140/epje/i2010-10545-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验