Suppr超能文献

聚合物溶液流经多孔介质的大规模流体动力学耦合布朗动力学模拟

Large Scale Hydrodynamically Coupled Brownian Dynamics Simulations of Polymer Solutions Flowing through Porous Media.

作者信息

Ahuja Vishal Raju, van der Gucht Jasper, Briels Wim

机构信息

Shell India Markets Private Limited, Shell Technology Centre Bangalore, Plot No 7, Bangalore Hardware Park, Devanahalli Industrial Park, Mahadeva Kodigehalli, Bengaluru 562149, Karnataka, India.

Physical Chemistry and Soft Matter, Wageningen University, Building 124, Stippeneng 4, 6708 WE Wageningen, The Netherlands.

出版信息

Polymers (Basel). 2022 Mar 31;14(7):1422. doi: 10.3390/polym14071422.

Abstract

Large scale simulations of polymer flow through porous media provide an important tool for solving problems in enhanced oil recovery, polymer processing and biological applications. In order to include the effects of a wide range of velocity and density fluctuations, we base our work on a coarse-grain particle-based model consisting of polymers following Brownian dynamics coupled to a background fluid flow through momentum conserving interactions. The polymers are represented as Finitely Extensible Non-Linear Elastic (FENE) dumbbells with interactions including slowly decaying transient forces to properly describe dynamic effects of the eliminated degrees of freedom. Model porous media are constructed from arrays of parallel solid beams with circular or square cross-sections, arranged periodically in the plane perpendicular to their axis. No-slip boundary conditions at the solid-fluid interfaces are imposed through interactions with artificial particles embedded within the solid part of the system. We compare the results of our simulations with those of standard Smoothed Particle Hydrodynamics simulations for Newtonian flow through the same porous media. We observe that in all cases the concentration of polymers at steady state is not uniform even though we start the simulations with a uniform polymer concentration, which is indicative of shear-induced cross-flow migration. Furthermore, we see the characteristic flattening of the velocity profile experimentally observed for shear-thinning polymer solutions flowing through channels as opposed to the parabolic Poiseuille flow profile for Newtonian fluids.

摘要

聚合物在多孔介质中流动的大规模模拟为解决强化采油、聚合物加工和生物应用中的问题提供了重要工具。为了考虑各种速度和密度波动的影响,我们的工作基于一种粗粒度的基于粒子的模型,该模型由遵循布朗动力学的聚合物组成,并通过动量守恒相互作用与背景流体流动相耦合。聚合物被表示为有限可延伸非线性弹性(FENE)哑铃,其相互作用包括缓慢衰减的瞬态力,以恰当地描述消除自由度的动态效应。模型多孔介质由具有圆形或方形横截面的平行固体梁阵列构成,在垂直于其轴线的平面上周期性排列。通过与嵌入系统固体部分的人工粒子相互作用,在固液界面处施加无滑移边界条件。我们将模拟结果与通过相同多孔介质的牛顿流的标准光滑粒子流体动力学模拟结果进行比较。我们观察到,在所有情况下,即使我们以均匀的聚合物浓度开始模拟,稳态下聚合物的浓度也不均匀,这表明存在剪切诱导的横向流迁移。此外,我们看到了对于剪切变稀聚合物溶液流经通道时实验观察到的速度分布特征扁平化,这与牛顿流体的抛物线泊肃叶流分布形成对比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0457/9003297/3e47aacea23f/polymers-14-01422-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验