Suppr超能文献

Metabolism of vasoactive peptides by vascular endothelium and smooth muscle aminopeptidase M.

作者信息

Palmieri F E, Bausback H H, Ward P E

机构信息

Department of Pharmacology, New York Medical College, Valhalla 10595.

出版信息

Biochem Pharmacol. 1989 Jan 1;38(1):173-80. doi: 10.1016/0006-2952(89)90165-2.

Abstract

The cellular localization of vascular plasma membrane aminopeptidase M (AmM; EC3.4.11.2) was examined in cultured porcine aorta endothelium and smooth muscle cells. AmM was 14-fold higher on smooth muscle (117 +/- 16 units/mg) than on endothelium (8.4 +/- 0.2). Proportional to its cellular distribution, AmM hydrolyzed the N-terminus of kallidin to produce bradykinin, and degraded des(Asp1)angiotensin I, angiotensin III, hepta(5-11)substance P and Met5-enkephalin. In contrast, bradykinin, angiotensin II and substance P were resistant to AmM-mediated hydrolysis. Peptide metabolism was optimal at pH 7.0 and was inhibited by o-phenanthroline, bestatin (Ki = 2.2 +/- 0.1 microM) and amastatin (Ki = 25 +/- 5 nM). Des(Asp1)angiotensin I and angiotensin III had the highest affinity (lowest Km) for AmM (Km = 2.2 +/- 0.5 and 2.0 +/- 0.4 microM respectively), followed by hepta(5-11)substance P (53.9 +/- 1.7 microM) and Met5-enkephalin (75.7 +/- 3.5 microM). In contrast, maximal velocities of hydrolysis were higher for Met5-enkephalin (313 +/- 2 nmol/min/mg) than for hepta(5-11)substance P (109 +/- 18 nmol/min/mg) or angiotensin III (26.5 +/- 1.0 nmol/min/mg). As expected for hydrolysis by a common enzyme, AmM-mediated enkephalin degradation was inhibited competitively by angiotensin III (Ki = 0.34 +/- 0.04 microM), hepta(5-11)substance P (43.7 +/- 6.3 microM) and kallidin (62 microM). These data suggest that vascular AmM may modulate vasoactive peptide levels in vivo, particularly within the microenvironment of endothelial and smooth muscle cell surface receptors.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验