Mandroyan Audrey, Mourad-Mahmoud Mahmoud, Doche Marie-Laure, Hihn Jean-Yves
Équipe Sonochimie et Réactivité des Surfaces, Institut UTINAM, UMR CNRS 6213, Université de Bourgogne Franche Comté (UFC), 25009 Besançon, France.
Équipe Sonochimie et Réactivité des Surfaces, Institut UTINAM, UMR CNRS 6213, Université de Bourgogne Franche Comté (UFC), 25009 Besançon, France.
Ultrason Sonochem. 2014 Nov;21(6):2010-9. doi: 10.1016/j.ultsonch.2014.02.019. Epub 2014 Mar 1.
This paper concerns a preliminary study for a new copper recovery process from ionic solvent. The aim of this work is to study the reduction of copper in Deep Eutectic Solvent (choline chloride-ethylene glycol) and to compare the influence of temperature and the ultrasound effects on kinetic parameters. Solutions were prepared by dissolution of chloride copper salt CuCl2 (to obtain Copper in oxidation degree II) or CuCl (to obtain Copper in oxidation degree I) and by leaching metallic copper directly in DES. The spectrophotometry UV-visible analysis of the leached solution showed that the copper soluble form obtained is at oxidation degree I (Copper I). Both cyclic voltammetry and linear voltammetry were performed in the three solutions at three temperatures (25, 50 and 80°C) and under ultrasonic conditions (F=20kHz, PT=5.8W) to calculate the mass transfer diffusion coefficient kD and the standard rate coefficient k°. These parameters are used to determine that copper reduction is carried out via a mixed kinetic-diffusion control process. Temperature and ultrasound have the same effect on mass transfer for reduction of Cu(II)/Cu(I). On the other hand, temperature is more beneficial than ultrasound for mass transfer of Cu(I)/Cu. Standard rate constant improvement due to temperature increase is of the same order as that obtained with ultrasound. But, by combining higher temperature and ultrasound (F=20kHz, PT=5.6W at 50°C), reduction limiting current is increased by a factor of 10 compared to initial conditions (T=25°C, silent), because ultrasonic stirring is more efficient in lower viscosity fluid. These values can be considered as key-parameters in the design of copper recovery in global processes using ultrasound.
本文涉及一项从离子溶剂中回收铜的新工艺的初步研究。这项工作的目的是研究深共熔溶剂(氯化胆碱 - 乙二醇)中铜的还原,并比较温度和超声效应对动力学参数的影响。通过溶解氯化铜盐CuCl₂(以获得氧化态为II的铜)或CuCl(以获得氧化态为I的铜)以及将金属铜直接浸出在深共熔溶剂中来制备溶液。对浸出液的紫外 - 可见分光光度分析表明,所获得的可溶铜形式为氧化态I(铜I)。在三种温度(25、50和80°C)以及超声条件(F = 20kHz,PT = 5.8W)下,对三种溶液进行循环伏安法和线性伏安法,以计算传质扩散系数kD和标准速率系数k°。这些参数用于确定铜的还原是通过混合动力学 - 扩散控制过程进行的。温度和超声对Cu(II)/Cu(I)还原的传质具有相同的影响。另一方面,对于Cu(I)/Cu的传质,温度比超声更有利。由于温度升高导致的标准速率常数的提高与超声获得的提高程度相同。但是,通过将较高温度和超声(50°C时F = 20kHz,PT = 5.6W)相结合,与初始条件(T = 25°C,无超声)相比,还原极限电流增加了10倍,因为超声搅拌在较低粘度的流体中更有效。这些值可被视为在使用超声的全球铜回收工艺设计中的关键参数。