Suppr超能文献

微图案引导的重叠动态微管对的组装。

Micropattern-guided assembly of overlapping pairs of dynamic microtubules.

作者信息

Fourniol Franck J, Li Tai-De, Bieling Peter, Mullins R Dyche, Fletcher Daniel A, Surrey Thomas

机构信息

London Research Institute, Cancer Research UK, London, United Kingdom.

Department of Bioengineering and Biophysics Group, University of California-Berkeley, Berkeley, California, USA.

出版信息

Methods Enzymol. 2014;540:339-60. doi: 10.1016/B978-0-12-397924-7.00019-4.

Abstract

Interactions between antiparallel microtubules are essential for the organization of spindles in dividing cells. The ability to form immobilized antiparallel microtubule pairs in vitro, combined with the ability to image them via TIRF microscopy, permits detailed biochemical characterization of microtubule cross-linking proteins and their effects on microtubule dynamics. Here, we describe methods for chemical micropatterning of microtubule seeds on glass surfaces in configurations that specifically promote the formation of antiparallel microtubule overlaps in vitro. We demonstrate that this assay is especially well suited for reconstitution of minimal midzone overlaps stabilized by the antiparallel microtubule cross-linking protein PRC1 and its binding partners. The micropatterning method is suitable for use with a broad range of proteins, and the assay is generally applicable to any microtubule cross-linking protein.

摘要

反平行微管之间的相互作用对于分裂细胞中纺锤体的组织至关重要。体外形成固定的反平行微管对的能力,与通过全内反射荧光显微镜(TIRF显微镜)对其成像的能力相结合,使得能够对微管交联蛋白及其对微管动力学的影响进行详细的生化表征。在这里,我们描述了在玻璃表面上对微管种子进行化学微图案化的方法,其构型能够在体外特异性促进反平行微管重叠的形成。我们证明,该检测方法特别适合于重组由反平行微管交联蛋白PRC1及其结合伙伴稳定的最小中间区重叠。微图案化方法适用于多种蛋白质,并且该检测方法通常适用于任何微管交联蛋白。

相似文献

1
Micropattern-guided assembly of overlapping pairs of dynamic microtubules.
Methods Enzymol. 2014;540:339-60. doi: 10.1016/B978-0-12-397924-7.00019-4.
4
Micropatterning microtubules.
Methods Cell Biol. 2014;120:39-51. doi: 10.1016/B978-0-12-417136-7.00003-3.
6
Reconstituting dynamic microtubule polymerization regulation by TOG domain proteins.
Methods Enzymol. 2014;540:131-48. doi: 10.1016/B978-0-12-397924-7.00008-X.
7
Self-Organization of Minimal Anaphase Spindle Midzone Bundles.
Curr Biol. 2019 Jul 8;29(13):2120-2130.e7. doi: 10.1016/j.cub.2019.05.049. Epub 2019 Jun 20.
8
Studying Tau-Microtubule Interaction Using Single-Molecule TIRF Microscopy.
Methods Mol Biol. 2020;2101:77-91. doi: 10.1007/978-1-0716-0219-5_6.
9
Xnf7 contributes to spindle integrity through its microtubule-bundling activity.
Curr Biol. 2005 Oct 11;15(19):1755-61. doi: 10.1016/j.cub.2005.08.049.
10
Measuring Pushing and Braking Forces Generated by Ensembles of Kinesin-5 Crosslinking Two Microtubules.
Dev Cell. 2015 Sep 28;34(6):669-81. doi: 10.1016/j.devcel.2015.08.017.

引用本文的文献

1
Polymer dynamics of Alp7A reveals how two critical concentrations govern assembly of dynamically unstable actin-like proteins.
Mol Biol Cell. 2024 Nov 1;35(11):ar145. doi: 10.1091/mbc.E23-11-0440. Epub 2024 Sep 25.
2
The molecular mechanism of load adaptation by branched actin networks.
Elife. 2022 Jun 24;11:e73145. doi: 10.7554/eLife.73145.
3
WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation.
EMBO J. 2018 Jan 4;37(1):102-121. doi: 10.15252/embj.201797039. Epub 2017 Nov 15.
4
Near-atomic cryo-EM structure of PRC1 bound to the microtubule.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9430-9. doi: 10.1073/pnas.1609903113. Epub 2016 Aug 4.
6
Control of microtubule organization and dynamics: two ends in the limelight.
Nat Rev Mol Cell Biol. 2015 Dec;16(12):711-26. doi: 10.1038/nrm4084. Epub 2015 Nov 12.

本文引用的文献

1
Self-organized optical device driven by motor proteins.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16408-13. doi: 10.1073/pnas.1306281110. Epub 2013 Sep 24.
2
Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A.
J Cell Biol. 2013 Aug 19;202(4):605-21. doi: 10.1083/jcb.201301094. Epub 2013 Aug 12.
3
Marking and measuring single microtubules by PRC1 and kinesin-4.
Cell. 2013 Jul 18;154(2):377-90. doi: 10.1016/j.cell.2013.06.021.
4
Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control.
Nat Cell Biol. 2013 Aug;15(8):948-57. doi: 10.1038/ncb2801. Epub 2013 Jul 14.
5
Micropattern-controlled local microtubule nucleation, transport, and mesoscale organization.
ACS Chem Biol. 2013 Apr 19;8(4):673-8. doi: 10.1021/cb300583p. Epub 2013 Jan 14.
6
End-binding proteins and Ase1/PRC1 define local functionality of structurally distinct parts of the microtubule cytoskeleton.
Trends Cell Biol. 2013 Feb;23(2):54-63. doi: 10.1016/j.tcb.2012.10.003. Epub 2012 Oct 25.
7
Quantification of MAP and molecular motor activities on geometrically controlled microtubule networks.
Cytoskeleton (Hoboken). 2013 Jan;70(1):12-23. doi: 10.1002/cm.21081. Epub 2012 Oct 17.
8
Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart.
Nat Cell Biol. 2011 Sep 4;13(10):1259-64. doi: 10.1038/ncb2323.
9
Reconstitution and quantification of dynamic microtubule end tracking in vitro using TIRF microscopy.
Methods Mol Biol. 2011;777:127-45. doi: 10.1007/978-1-61779-252-6_10.
10
Directional switching of the kinesin Cin8 through motor coupling.
Science. 2011 Apr 1;332(6025):94-9. doi: 10.1126/science.1199945. Epub 2011 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验