Suppr超能文献

测量驱动蛋白-5交联两根微管的聚合体产生的推拉力和制动力。

Measuring Pushing and Braking Forces Generated by Ensembles of Kinesin-5 Crosslinking Two Microtubules.

作者信息

Shimamoto Yuta, Forth Scott, Kapoor Tarun M

机构信息

Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA; JST PRESTO, The Rockefeller University, New York, NY 10065, USA.

Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA.

出版信息

Dev Cell. 2015 Sep 28;34(6):669-81. doi: 10.1016/j.devcel.2015.08.017.

Abstract

The proper organization of the microtubule-based mitotic spindle is proposed to depend on nanometer-sized motor proteins generating forces that scale with a micron-sized geometric feature, such as microtubule overlap length. However, it is unclear whether such regulation can be achieved by any mitotic motor protein. Here, we employ an optical-trap- and total internal reflection fluorescence (TIRF)-based assay to show that ensembles of kinesin-5, a conserved mitotic motor protein, can push apart overlapping antiparallel microtubules to generate a force whose magnitude scales with filament overlap length. We also find that kinesin-5 can produce overlap-length-dependent "brake-like" resistance against relative microtubule sliding in both parallel and antiparallel geometries, an activity that has been suggested by cell biological studies but had not been directly measured. Together, these findings, along with numerical simulations, reveal how a motor protein can function as an analog converter, "reading" simple geometric and dynamic features in cytoskeletal networks to produce regulated force outputs.

摘要

基于微管的有丝分裂纺锤体的正确组织被认为依赖于纳米级的马达蛋白产生与微米级几何特征(如微管重叠长度)成比例的力。然而,目前尚不清楚任何有丝分裂马达蛋白是否能实现这种调节。在这里,我们采用基于光镊和全内反射荧光(TIRF)的检测方法,来证明驱动蛋白-5(一种保守的有丝分裂马达蛋白)的集合体能够推开重叠的反平行微管,以产生一种大小与细丝重叠长度成比例的力。我们还发现,驱动蛋白-5能够在平行和反平行几何结构中,对微管的相对滑动产生重叠长度依赖性的“刹车样”阻力,细胞生物学研究曾暗示过这种活性,但尚未直接测量。这些发现与数值模拟一起,揭示了一种马达蛋白如何能够作为一个模拟转换器发挥作用,“读取”细胞骨架网络中的简单几何和动态特征,以产生受调节的力输出。

相似文献

5
Analyzing the micromechanics of the cell division apparatus.分析细胞分裂装置的微观力学。
Methods Cell Biol. 2018;145:173-190. doi: 10.1016/bs.mcb.2018.03.022. Epub 2018 May 1.

引用本文的文献

3
Force generation and resistance in human mitosis.人类有丝分裂中的力产生与阻力
Biophys Rev. 2024 Sep 28;16(5):551-562. doi: 10.1007/s12551-024-01235-0. eCollection 2024 Oct.
5
Microtubule choreography: spindle self-organization during cell division.微管编排:细胞分裂过程中的纺锤体自我组织
Biophys Rev. 2024 Sep 30;16(5):613-624. doi: 10.1007/s12551-024-01236-z. eCollection 2024 Oct.
7
Mechanism and regulation of kinesin motors.驱动蛋白的作用机制与调控
Nat Rev Mol Cell Biol. 2025 Feb;26(2):86-103. doi: 10.1038/s41580-024-00780-6. Epub 2024 Oct 11.

本文引用的文献

7
Molecular crowding creates traffic jams of kinesin motors on microtubules.分子拥挤会在微管上造成驱动蛋白分子的交通堵塞。
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6100-5. doi: 10.1073/pnas.1107281109. Epub 2012 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验