Lee W C T, McKibbin S R, Thompson D L, Xue K, Scappucci G, Bishop N, Celler G K, Carroll M S, Simmons M Y
Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, NSW 2052, Australia.
Nanotechnology. 2014 Apr 11;25(14):145302. doi: 10.1088/0957-4484/25/14/145302. Epub 2014 Mar 14.
We investigate the ability to introduce strain into atomic-scale silicon device fabrication by performing hydrogen lithography and creating electrically active phosphorus δ-doped silicon on strained silicon-on-insulator (sSOI) substrates. Lithographic patterns were obtained by selectively desorbing hydrogen atoms from a H resist layer adsorbed on a clean, atomically flat sSOI(001) surface with a scanning tunnelling microscope tip operating in ultra-high vacuum. The influence of the tip-to-sample bias on the lithographic process was investigated allowing us to pattern feature-sizes from several microns down to 1.3 nm. In parallel we have investigated the impact of strain on the electrical properties of P:Si δ-doped layers. Despite the presence of strain inducing surface variations in the silicon substrate we still achieve high carrier densities (>1.0 × 10(14) cm(-2)) with mobilities of ∼100 cm(2) V(-1) s(-1). These results open up the possibility of a scanning-probe lithography approach to the fabrication of strained atomic-scale devices in silicon.
我们通过进行氢光刻并在应变绝缘体上硅(sSOI)衬底上制备具有电活性的磷δ掺杂硅,来研究在原子尺度硅器件制造中引入应变的能力。通过在超高真空环境下操作的扫描隧道显微镜尖端,从吸附在清洁、原子级平整的sSOI(001)表面的H抗蚀剂层中选择性地解吸氢原子,从而获得光刻图案。研究了针尖与样品之间的偏压对光刻过程的影响,使我们能够制备出从几微米到1.3纳米的图案特征尺寸。同时,我们还研究了应变对P:Siδ掺杂层电学性质的影响。尽管硅衬底中存在应变诱导的表面变化,但我们仍然实现了高载流子密度(> 1.0×10(14) cm(-2)),迁移率约为100 cm(2) V(-1) s(-1)。这些结果为采用扫描探针光刻方法制造硅基应变原子尺度器件开辟了可能性。