Suppr超能文献

用氮氧化物功能化氧化石墨烯增强的尼龙6纳米纤维的电子能量损失谱分析

EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide.

作者信息

Leyva-Porras César, Ornelas-Gutiérrez C, Miki-Yoshida M, Avila-Vega Yazmín I, Macossay Javier, Bonilla-Cruz José

机构信息

Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Unidad Monterrey), Av. Alianza Norte # 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, Apodaca, N. L., México, C.P. 66600 ; Centro de Investigación en Materiales DIP-CUCEI, Universidad de Guadalajara, Av. Revolución # 1500, Col. Olímpica, Guadalajara, México. C.P. 44430.

Centro de Investigación en Materiales Avanzados S.C. (CIMAV) and Laboratorio Nacional de Nanotecnología. Miguel de Cervantes # 120. Complejo Industrial Chihuahua, Chihuahua, Chih. México. 31109.

出版信息

Carbon N Y. 2014;70:164-171. doi: 10.1016/j.carbon.2013.12.087.

Abstract

A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite.

摘要

本文报道了通过透射电子显微镜(TEM)和电子能量损失谱(EELS)对分散在尼龙6纳米纤维中的氮氧化物功能化氧化石墨烯层(GOFT)进行的详细分析。通过TEM利用电子衍射图谱(EDP)证实了氧化石墨到GOFT的功能化和剥离过程,其中观察到GOFT有1至4层石墨烯层。GOFT层在尼龙6纳米纤维样品中的分布和排列表明,GOFT薄片主要在纤维内部,但有些部分从纤维中突出。此外,尼龙6纳米纤维的平均直径为225纳米,长度为几微米。通过EELS对嵌入纤维中的GOFT薄片、原始纤维和无定形碳进行了分析,其中每个光谱[对应于碳边缘(C-K)]在精细结构上都表现出变化,从而能够清晰地区分:i)GOFT单层,ii)尼龙-6纳米纤维,以及iii)碳基底。EELS分析首次作为一种强大的工具,用于识别尼龙6纳米纤维复合材料中的功能化石墨烯单层(<4层GOFT)。

相似文献

1
EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide.
Carbon N Y. 2014;70:164-171. doi: 10.1016/j.carbon.2013.12.087.
2
Nitroxide-Functionalized Graphene Oxide from Graphite Oxide.
Carbon N Y. 2013 Nov 1;63. doi: 10.1016/j.carbon.2013.06.093.
3
The Role of α, γ,  and Metastable Polymorphs on Electrospun Polyamide 6/Functionalized Graphene Oxide.
Macromol Rapid Commun. 2020 Nov;41(21):e2000195. doi: 10.1002/marc.202000195. Epub 2020 Jun 11.
4
In situ Polymerization of Multi-Walled Carbon Nanotube/Nylon-6 Nanocomposites and Their Electrospun Nanofibers.
Nanoscale Res Lett. 2009 Jan;4(1):39-46. doi: 10.1007/s11671-008-9199-0. Epub 2008 Nov 18.
8
Preparation and study of the antibacterial ability of graphene oxide-catechol hybrid polylactic acid nanofiber mats.
Colloids Surf B Biointerfaces. 2018 Dec 1;172:496-505. doi: 10.1016/j.colsurfb.2018.09.003. Epub 2018 Sep 5.
10
Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
Adv Colloid Interface Sci. 2014 Feb;204:35-56. doi: 10.1016/j.cis.2013.12.005. Epub 2013 Dec 26.

引用本文的文献

本文引用的文献

1
Nitroxide-Functionalized Graphene Oxide from Graphite Oxide.
Carbon N Y. 2013 Nov 1;63. doi: 10.1016/j.carbon.2013.06.093.
2
Covalent functionalization of graphene with reactive intermediates.
Acc Chem Res. 2013 Jan 15;46(1):181-9. doi: 10.1021/ar300172h. Epub 2012 Nov 1.
3
Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications.
Chem Rev. 2012 Nov 14;112(11):6156-214. doi: 10.1021/cr3000412. Epub 2012 Sep 25.
4
Designer Dirac fermions and topological phases in molecular graphene.
Nature. 2012 Mar 14;483(7389):306-10. doi: 10.1038/nature10941.
5
Thermal properties of graphene and nanostructured carbon materials.
Nat Mater. 2011 Jul 22;10(8):569-81. doi: 10.1038/nmat3064.
6
Nitroxides: applications in synthesis and in polymer chemistry.
Angew Chem Int Ed Engl. 2011 May 23;50(22):5034-68. doi: 10.1002/anie.201002547. Epub 2011 Apr 28.
7
Improved synthesis of graphene oxide.
ACS Nano. 2010 Aug 24;4(8):4806-14. doi: 10.1021/nn1006368.
8
The chemistry of graphene oxide.
Chem Soc Rev. 2010 Jan;39(1):228-40. doi: 10.1039/b917103g. Epub 2009 Nov 3.
10
Chemical methods for the production of graphenes.
Nat Nanotechnol. 2009 Apr;4(4):217-24. doi: 10.1038/nnano.2009.58. Epub 2009 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验