Suppr超能文献

用于几何规划和符号式规划的MM算法。

MM Algorithms for Geometric and Signomial Programming.

作者信息

Lange Kenneth, Zhou Hua

机构信息

Departments of Biomathematics, Human Genetics, and Statistics, University of California, Los Angeles, CA 90095-1766, USA.

Department of Statistics, North Carolina State University, 2311 Stinson Drive, Campus Box 8203, Raleigh, NC 27695-8203, USA.

出版信息

Math Program. 2014 Feb 1;143(1-2):339-356. doi: 10.1007/s10107-012-0612-1.

Abstract

This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.

摘要

本文推导了符号式规划的新算法,符号式规划是几何规划的一种推广。这些算法基于一种名为MM算法的通用优化原理。在此框架下,可以应用几何-算术平均不等式和支撑超平面不等式来创建一个参数分离的替代函数。因此,无约束符号式规划可简化为一系列一维最小化问题。简单示例表明,所推导的MM算法可以收敛到边界点或连续最小点集合中的某一点。针对几何规划,证明了最小点唯一或出现在参数空间内部的条件。收敛到内部点的速度是线性的。最后,MM框架能够轻松处理符号式类型的等式和不等式约束。对于最重要的特殊情况,即约束二次规划,MM算法涉及非常简单的更新。

相似文献

1
MM Algorithms for Geometric and Signomial Programming.用于几何规划和符号式规划的MM算法。
Math Program. 2014 Feb 1;143(1-2):339-356. doi: 10.1007/s10107-012-0612-1.
7
A Path Algorithm for Constrained Estimation.一种用于约束估计的路径算法。
J Comput Graph Stat. 2013;22(2):261-283. doi: 10.1080/10618600.2012.681248.
8
Path Following in the Exact Penalty Method of Convex Programming.凸规划精确罚函数法中的路径跟踪
Comput Optim Appl. 2015 Jul 1;61(3):609-634. doi: 10.1007/s10589-015-9732-x.
9

引用本文的文献

1
A Cornucopia of Maximum Likelihood Algorithms.大量的最大似然算法
Am Stat. 2025 Aug 4. doi: 10.1080/00031305.2025.2526535.
2
MM Algorithms For Variance Components Models.方差分量模型的MM算法
J Comput Graph Stat. 2019;28(2):350-361. doi: 10.1080/10618600.2018.1529601. Epub 2019 Mar 9.
3
Path Following in the Exact Penalty Method of Convex Programming.凸规划精确罚函数法中的路径跟踪
Comput Optim Appl. 2015 Jul 1;61(3):609-634. doi: 10.1007/s10589-015-9732-x.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验