IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):2993-3004. doi: 10.1109/TNNLS.2020.3009201. Epub 2021 Jul 6.
To obtain the optimal solution to the time-varying quadratic programming (TVQP) problem with equality and multitype inequality constraints, a penalty strategy combined varying-parameter recurrent neural network (PS-VP-RNN) for solving TVQP problems is proposed and analyzed. By using a novel penalty function designed in this article, the inequality constraint of the TVQP can be transformed into a penalty term that is added into the objective function of TVQP problems. Then, based on the design method of VP-RNN, a PS-VP-RNN is designed and analyzed for solving the TVQP with penalty term. One of the greatest advantages of PS-VP-RNN is that it cannot only solve the TVQP with equality constraints but can also solve the TVQP with inequality and bounded constraints. The global convergence theorem of PS-VP-RNN is presented and proved. Finally, three numerical simulation experiments with different forms of inequality and bounded constraints verify the effectiveness and accuracy of PS-VP-RNN in solving the TVQP problems.
为了获得等式和多类型不等式约束时变二次规划 (TVQP) 问题的最优解,提出并分析了一种用于求解 TVQP 问题的罚策略结合变参数递归神经网络 (PS-VP-RNN)。通过使用本文设计的新颖罚函数,可将 TVQP 的不等式约束转换为罚项,将其添加到 TVQP 问题的目标函数中。然后,基于 VP-RNN 的设计方法,设计并分析了具有罚项的 PS-VP-RNN 来求解带罚项的 TVQP。PS-VP-RNN 的最大优势之一是,它不仅可以求解等式约束的 TVQP,还可以求解不等式和有界约束的 TVQP。提出并证明了 PS-VP-RNN 的全局收敛定理。最后,通过三个具有不同形式的不等式和有界约束的数值模拟实验验证了 PS-VP-RNN 在求解 TVQP 问题时的有效性和准确性。