Suppr超能文献

一种惩罚策略结合变参数递归神经网络求解时变多类型约束二次规划问题。

A Penalty Strategy Combined Varying-Parameter Recurrent Neural Network for Solving Time-Varying Multi-Type Constrained Quadratic Programming Problems.

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):2993-3004. doi: 10.1109/TNNLS.2020.3009201. Epub 2021 Jul 6.

Abstract

To obtain the optimal solution to the time-varying quadratic programming (TVQP) problem with equality and multitype inequality constraints, a penalty strategy combined varying-parameter recurrent neural network (PS-VP-RNN) for solving TVQP problems is proposed and analyzed. By using a novel penalty function designed in this article, the inequality constraint of the TVQP can be transformed into a penalty term that is added into the objective function of TVQP problems. Then, based on the design method of VP-RNN, a PS-VP-RNN is designed and analyzed for solving the TVQP with penalty term. One of the greatest advantages of PS-VP-RNN is that it cannot only solve the TVQP with equality constraints but can also solve the TVQP with inequality and bounded constraints. The global convergence theorem of PS-VP-RNN is presented and proved. Finally, three numerical simulation experiments with different forms of inequality and bounded constraints verify the effectiveness and accuracy of PS-VP-RNN in solving the TVQP problems.

摘要

为了获得等式和多类型不等式约束时变二次规划 (TVQP) 问题的最优解,提出并分析了一种用于求解 TVQP 问题的罚策略结合变参数递归神经网络 (PS-VP-RNN)。通过使用本文设计的新颖罚函数,可将 TVQP 的不等式约束转换为罚项,将其添加到 TVQP 问题的目标函数中。然后,基于 VP-RNN 的设计方法,设计并分析了具有罚项的 PS-VP-RNN 来求解带罚项的 TVQP。PS-VP-RNN 的最大优势之一是,它不仅可以求解等式约束的 TVQP,还可以求解不等式和有界约束的 TVQP。提出并证明了 PS-VP-RNN 的全局收敛定理。最后,通过三个具有不同形式的不等式和有界约束的数值模拟实验验证了 PS-VP-RNN 在求解 TVQP 问题时的有效性和准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验