Topper Stephen R, Navitsky Michael A, Medvitz Richard B, Paterson Eric G, Siedlecki Christopher A, Slattery Margaret J, Deutsch Steven, Rosenberg Gerson, Manning Keefe B
Department of Bioengineering, The Pennsylvania State University, 205 Hallowell Building, University Park, PA 16802, USA.
Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
Cardiovasc Eng Technol. 2014 Mar 1;5(1):54-69. doi: 10.1007/s13239-014-0174-x.
We compare the velocity and shear obtained from particle image velocimetry (PIV) and computational fluid dynamics (CFD) in a pulsatile ventricular assist device (VAD) to further test our thrombus predictive methodology using microscopy data from an explanted VAD. To mimic physiological conditions , a mock circulatory loop is used with a blood analog that matched blood's viscoelastic behavior at 40% hematocrit. Under normal physiologic pressures and for a heart rate of 75 bpm, PIV data is acquired and wall shear maps are produced. The resolution of the PIV shear rate calculations are tested using the CFD and found to be in the same range. A bovine study, using a model of the 50 cc Penn State V-2 VAD, for 30 days at a constant beat rate of 75 beats per minute (bpm) provides the microscopic data whereby after the 30 days, the device is explanted and the sac surface analyzed using scanning electron microscopy (SEM) and, after immunofluorescent labeling for platelets and fibrin, confocal microscopy. Areas are examined based on PIV measurements and CFD, with special attention to low shear regions where platelet and fibrin deposition are most likely to occur. Data collected within the outlet port in a direction normal to the front wall of the VAD shows that some regions experience wall shear rates less than 500 s, which increases the likelihood of platelet and fibrin deposition. Despite only one animal study, correlations between PIV, CFD, and data show promise. Deposition probability is quantified by the thrombus susceptibility potential, a calculation to correlate low shear and time of shear with deposition.
我们比较了在脉动式心室辅助装置(VAD)中通过粒子图像测速技术(PIV)和计算流体动力学(CFD)获得的速度和剪切力,以利用来自一个植入式VAD的显微镜数据进一步测试我们的血栓预测方法。为了模拟生理条件,使用了一个模拟循环回路,其中含有一种血液模拟物,该模拟物在血细胞比容为40%时与血液的粘弹性行为相匹配。在正常生理压力和心率为75次/分钟的情况下,采集PIV数据并生成壁面剪切图。使用CFD测试了PIV剪切率计算的分辨率,发现其处于相同范围内。一项针对50 cc宾夕法尼亚州立大学V-2 VAD模型的牛研究,以每分钟75次(bpm)的恒定搏动率进行了30天,提供了微观数据,30天后,将该装置取出,使用扫描电子显微镜(SEM)分析囊表面,并在对血小板和纤维蛋白进行免疫荧光标记后,使用共聚焦显微镜进行分析。根据PIV测量和CFD对区域进行检查,特别关注血小板和纤维蛋白沉积最可能发生的低剪切区域。在VAD前壁法线方向的出口端口内收集的数据表明,一些区域的壁面剪切率低于500 s,这增加了血小板和纤维蛋白沉积的可能性。尽管只有一项动物研究,但PIV、CFD和数据之间的相关性显示出了前景。沉积概率通过血栓易感性潜力进行量化,这是一种将低剪切和剪切时间与沉积相关联的计算方法。