Suppr超能文献

联合计算机模拟和体外方法预测与体内血栓形成相关的血液滤器中的低壁切应力区域。

Combined In Silico and In Vitro Approach Predicts Low Wall Shear Stress Regions in a Hemofilter that Correlate with Thrombus Formation In Vivo.

出版信息

ASAIO J. 2018 Mar/Apr;64(2):211-217. doi: 10.1097/MAT.0000000000000649.

Abstract

A major challenge in developing blood-contacting medical devices is mitigating thrombogenicity of an intravascular device. Thrombi may interfere with device function or embolize from the device to occlude distant vascular beds with catastrophic consequences. Chemical interactions between plasma proteins and bioengineered surface occur at the nanometer scale; however, continuum models of blood predict local shear stresses that lead to platelet activation or aggregation and thrombosis. Here, an iterative approach to blood flow path design incorporating in silico, in vitro, and in vivo experiments predicted the occurrence and location of thrombi in an implantable hemofilter. Low wall shear stress (WSS) regions identified by computational fluid dynamics (CFD) predicted clot formation in vivo. Revised designs based on CFD demonstrated superior performance, illustrating the importance of a multipronged approach for a successful design process.

摘要

开发与血液接触的医疗设备的主要挑战是减轻血管内设备的血栓形成性。血栓可能会干扰设备的功能,或者从设备脱落并栓塞到远处的血管床,从而导致灾难性的后果。血浆蛋白和生物工程表面之间的化学相互作用发生在纳米尺度上;然而,血液的连续体模型预测会导致血小板激活或聚集以及血栓形成的局部剪切应力。在这里,一种结合了计算机模拟、体外和体内实验的血流路径设计迭代方法预测了植入式血液滤器中血栓的发生和位置。计算流体动力学 (CFD) 确定的低壁剪切应力 (WSS) 区域预测了体内血栓的形成。基于 CFD 的修订设计表现出更好的性能,说明了成功设计流程中多管齐下方法的重要性。

相似文献

2
Original article submission: Platelet stress accumulation analysis to predict thrombogenicity of an artificial kidney.
J Biomech. 2018 Mar 1;69:26-33. doi: 10.1016/j.jbiomech.2018.01.014. Epub 2018 Jan 16.
5
Development of a computational model for macroscopic predictions of device-induced thrombosis.
Biomech Model Mechanobiol. 2016 Dec;15(6):1713-1731. doi: 10.1007/s10237-016-0793-2. Epub 2016 May 12.
8
Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin.
Artif Organs. 2014 Jul;38(7):556-65. doi: 10.1111/aor.12243. Epub 2013 Dec 17.
9
The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice.
J Biomech. 2016 Sep 6;49(13):2741-2747. doi: 10.1016/j.jbiomech.2016.06.010. Epub 2016 Jun 15.
10
Determining possible thrombus sites in an extracorporeal device, using computational fluid dynamics-derived relative residence time.
Comput Methods Biomech Biomed Engin. 2015;18(6):628-34. doi: 10.1080/10255842.2013.826655. Epub 2014 Jan 27.

引用本文的文献

1
Integrated multidisciplinary approach to aneurysm hemodynamic analysis: numerical simulation, experiment, and deep learning.
Front Bioeng Biotechnol. 2025 Jun 3;13:1602190. doi: 10.3389/fbioe.2025.1602190. eCollection 2025.
2
Translation of Animal Study to Human: In Silico Based Development of Implantable Pulmonary Artery Pressure Sensor.
Int J Numer Method Biomed Eng. 2025 Jun;41(6):e70050. doi: 10.1002/cnm.70050.
3
Computational hemodynamic pathophysiology of internal carotid artery blister aneurysms.
Biomed Eng Online. 2024 Nov 21;23(1):118. doi: 10.1186/s12938-024-01306-z.
4
Flow Dynamic Factors Correlated With Device-Related Thrombosis After Left Atrial Appendage Occlusion.
JACC Adv. 2024 Oct 15;3(11):101339. doi: 10.1016/j.jacadv.2024.101339. eCollection 2024 Nov.
5
Hemodynamic changes for half cover left subclavian artery ostium during thoracic endovascular aortic repair.
Front Surg. 2024 Aug 8;11:1399230. doi: 10.3389/fsurg.2024.1399230. eCollection 2024.
6
In-silico enhanced animal study of pulmonary artery pressure sensors: assessing hemodynamics using computational fluid dynamics.
Front Cardiovasc Med. 2023 Sep 7;10:1193209. doi: 10.3389/fcvm.2023.1193209. eCollection 2023.
7
Feasibility of an implantable bioreactor for renal cell therapy using silicon nanopore membranes.
Nat Commun. 2023 Aug 29;14(1):4890. doi: 10.1038/s41467-023-39888-2.
9
Mathematical and Computational Modeling of Device-Induced Thrombosis.
Curr Opin Biomed Eng. 2021 Dec;20. doi: 10.1016/j.cobme.2021.100349. Epub 2021 Sep 28.
10
Association of vortical structures and hemodynamic parameters for regional thrombus accumulation in abdominal aortic aneurysms.
Int J Numer Method Biomed Eng. 2022 Feb;38(2):e3555. doi: 10.1002/cnm.3555. Epub 2021 Dec 12.

本文引用的文献

1
First Implantation of Silicon Nanopore Membrane Hemofilters.
ASAIO J. 2016 Jul-Aug;62(4):491-5. doi: 10.1097/MAT.0000000000000367.
2
Lagrangian methods for blood damage estimation in cardiovascular devices--How numerical implementation affects the results.
Expert Rev Med Devices. 2016;13(2):113-22. doi: 10.1586/17434440.2016.1133283. Epub 2016 Jan 11.
3
Repopulation of porcine kidney scaffold using porcine primary renal cells.
Acta Biomater. 2016 Jan;29:52-61. doi: 10.1016/j.actbio.2015.11.026. Epub 2015 Nov 17.
4
Mechanical platelet activation potential in abdominal aortic aneurysms.
J Biomech Eng. 2015 Apr;137(4):041005. doi: 10.1115/1.4029580. Epub 2015 Feb 5.
5
The Use of Fluid Mechanics to Predict Regions of Microscopic Thrombus Formation in Pulsatile VADs.
Cardiovasc Eng Technol. 2014 Mar 1;5(1):54-69. doi: 10.1007/s13239-014-0174-x.
8
A non-discrete method for computation of residence time in fluid mechanics simulations.
Phys Fluids (1994). 2013 Nov;25(11):110802. doi: 10.1063/1.4819142. Epub 2013 Aug 23.
9
Regeneration and experimental orthotopic transplantation of a bioengineered kidney.
Nat Med. 2013 May;19(5):646-51. doi: 10.1038/nm.3154. Epub 2013 Apr 14.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验