ASAIO J. 2018 Mar/Apr;64(2):211-217. doi: 10.1097/MAT.0000000000000649.
A major challenge in developing blood-contacting medical devices is mitigating thrombogenicity of an intravascular device. Thrombi may interfere with device function or embolize from the device to occlude distant vascular beds with catastrophic consequences. Chemical interactions between plasma proteins and bioengineered surface occur at the nanometer scale; however, continuum models of blood predict local shear stresses that lead to platelet activation or aggregation and thrombosis. Here, an iterative approach to blood flow path design incorporating in silico, in vitro, and in vivo experiments predicted the occurrence and location of thrombi in an implantable hemofilter. Low wall shear stress (WSS) regions identified by computational fluid dynamics (CFD) predicted clot formation in vivo. Revised designs based on CFD demonstrated superior performance, illustrating the importance of a multipronged approach for a successful design process.
开发与血液接触的医疗设备的主要挑战是减轻血管内设备的血栓形成性。血栓可能会干扰设备的功能,或者从设备脱落并栓塞到远处的血管床,从而导致灾难性的后果。血浆蛋白和生物工程表面之间的化学相互作用发生在纳米尺度上;然而,血液的连续体模型预测会导致血小板激活或聚集以及血栓形成的局部剪切应力。在这里,一种结合了计算机模拟、体外和体内实验的血流路径设计迭代方法预测了植入式血液滤器中血栓的发生和位置。计算流体动力学 (CFD) 确定的低壁剪切应力 (WSS) 区域预测了体内血栓的形成。基于 CFD 的修订设计表现出更好的性能,说明了成功设计流程中多管齐下方法的重要性。