Suppr超能文献

同时对多个结局进行综合,并将治疗效果映射到一个共同的尺度上。

Simultaneous multioutcome synthesis and mapping of treatment effects to a common scale.

机构信息

School of Social & Community Medicine, University of Bristol, Bristol, UK.

School of Social & Community Medicine, University of Bristol, Bristol, UK.

出版信息

Value Health. 2014 Mar;17(2):280-7. doi: 10.1016/j.jval.2013.12.006.

Abstract

OBJECTIVES

A new method is presented for both synthesizing treatment effects on multiple outcomes subject to measurement error and estimating coherent mapping coefficients between all outcomes. It can be applied to sets of trials reporting different combinations of patient- or clinician-reported outcomes, including both disease-specific measures and generic health-related quality-of-life measures. It is underpinned by a structural equation model that includes measurement error and latent common treatment effect factor. Treatment effects can be expressed on any of the test instruments that have been used.

METHODS

This is illustrated in a synthesis of eight placebo-controlled trials of TNF-α inhibitors in ankylosing spondylitis, each reporting treatment effects on between two and five of a total six test instruments.

RESULTS

The method has advantages over other methods for synthesis of multiple outcome data, including standardization and multivariate normal synthesis. Unlike standardization, it allows synthesis of treatment effect information from test instruments sensitive to different underlying constructs. It represents a special case of previously proposed multivariate normal models for evidence synthesis, but unlike the former, it also estimates mappings. Combining synthesis and mapping as a single operation makes more efficient use of available data than do current mapping methods and generates treatment effects that are consistent with the mappings. A limitation, however, is that it can only generate mappings to and from those instruments on which some trial data exist.

CONCLUSIONS

The method should be assessed in a wide range of data sets on different clinical conditions, before it can be used routinely in health technology assessment.

摘要

目的

提出了一种新的方法,用于综合多个受测量误差影响的结局的治疗效果,并估计所有结局之间的一致性映射系数。它可应用于报告患者或临床医生报告的结局的不同组合的一系列试验,包括特定疾病的测量指标和通用健康相关生活质量测量指标。它基于一个结构方程模型,包括测量误差和潜在的共同治疗效果因素。治疗效果可以在使用过的任何测试仪器上表示。

方法

以八项 TNF-α 抑制剂治疗强直性脊柱炎的安慰剂对照试验的综合为例,每项试验报告了六种测试仪器中的两种至五种之间的治疗效果。

结果

该方法在综合多个结局数据方面优于其他方法,包括标准化和多元正态综合。与标准化不同,它允许从对不同潜在结构敏感的测试仪器中综合治疗效果信息。它代表了以前提出的证据综合多元正态模型的一个特例,但与前者不同的是,它还估计了映射。将综合和映射作为单一操作进行,可以比当前的映射方法更有效地利用现有数据,并生成与映射一致的治疗效果。然而,一个限制是,它只能生成与存在一些试验数据的仪器之间的映射。

结论

在常规用于卫生技术评估之前,应在不同临床条件的广泛数据集上评估该方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6f/3991420/458d6d9063ce/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验