Leitão Ana Lúcia, Enguita Francisco J
Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal.
Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal.
Microbiol Res. 2014 Sep-Oct;169(9-10):652-65. doi: 10.1016/j.micres.2014.02.007. Epub 2014 Feb 25.
Secondary metabolic pathways of fungal origin provide an almost unlimited resource of new compounds for medical applications, which can fulfill some of the, currently unmet, needs for therapeutic alternatives for the treatment of a number of diseases. Secondary metabolites secreted to the extracellular medium (extrolites) belong to diverse chemical and structural families, but the majority of them are synthesized by the condensation of a limited number of precursor building blocks including amino acids, sugars, lipids and low molecular weight compounds also employed in anabolic processes. In fungi, genes related to secondary metabolic pathways are frequently clustered together and show a modular organization within fungal genomes. The majority of fungal gene clusters responsible for the biosynthesis of secondary metabolites contain genes encoding a high molecular weight condensing enzyme which is responsible for the assembly of the precursor units of the metabolite. They also contain other auxiliary genes which encode enzymes involved in subsequent chemical modification of the metabolite core. Synthetic biology is a branch of molecular biology whose main objective is the manipulation of cellular components and processes in order to perform logically connected metabolic functions. In synthetic biology applications, biosynthetic modules from secondary metabolic processes can be rationally engineered and combined to produce either new compounds, or to improve the activities and/or the bioavailability of the already known ones. Recently, advanced genome editing techniques based on guided DNA endonucleases have shown potential for the manipulation of eukaryotic and bacterial genomes. This review discusses the potential application of genetic engineering and genome editing tools in the rational design of fungal secondary metabolite pathways by taking advantage of the increasing availability of genomic and biochemical data.
真菌来源的次生代谢途径为医学应用提供了几乎无限的新化合物资源,这些化合物可以满足目前一些未得到满足的需求,为多种疾病的治疗提供替代疗法。分泌到细胞外培养基中的次生代谢产物(胞外代谢产物)属于不同的化学和结构家族,但它们大多数是由有限数量的前体构建模块缩合而成,这些前体构建模块包括氨基酸、糖类、脂质以及合成代谢过程中也会用到的低分子量化合物。在真菌中,与次生代谢途径相关的基因经常聚集在一起,并在真菌基因组中呈现模块化组织。大多数负责次生代谢产物生物合成的真菌基因簇都包含编码高分子量缩合酶的基因,该酶负责代谢产物前体单元的组装。它们还包含其他辅助基因,这些基因编码参与代谢产物核心后续化学修饰的酶。合成生物学是分子生物学的一个分支,其主要目标是操纵细胞成分和过程,以执行逻辑上相关的代谢功能。在合成生物学应用中,可以对次生代谢过程中的生物合成模块进行合理设计和组合,以生产新化合物,或提高已知化合物的活性和/或生物利用度。最近,基于引导性DNA内切酶的先进基因组编辑技术已显示出操纵真核和细菌基因组的潜力。本综述利用日益丰富的基因组和生化数据,探讨了基因工程和基因组编辑工具在真菌次生代谢产物途径合理设计中的潜在应用。