Suppr超能文献

平衡门诊住院医师培训中的临床经验。

Balancing clinical experience in outpatient residency training.

作者信息

Stahl James E, Balasubramanian Hari Jagannathan, Gao Xiaoling, Overko Steven, Fosburgh Blair

机构信息

MGH Institute for Technology Assessment, Boston, MA (JES)

Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA (HJB, XG, SO).

出版信息

Med Decis Making. 2014 May;34(4):464-72. doi: 10.1177/0272989X14524304. Epub 2014 Mar 17.

Abstract

BACKGROUND

To receive adequate training experience, resident panels in teaching clinics must have a sufficiently diverse patient case-mix. However, case-mix can differ from one resident panel to another, resulting in inconsistent training.

METHOD

Encounter data from primary care residency clinics at Massachusetts General Hospital from July 2008 to May 2010 (64 residents and ~3800 patients) were used to characterize patients by gender, age, major disease category (both acute and chronic, e.g., Cardio Acute, Cardio Chronic, etc., for a total of 44 disease categories), and number of disease categories. Imbalance across resident panels was characterized by the standard deviation for disease category, patient panel size, and annual visit frequency. To balance case-mix in resident panels, patient reassignment algorithms were proposed. First, patients were sorted by complexity; then patients were allocated sequentially to the panel with the least overall complexity. Patient reassignment across resident panels was considered under 3 scenarios: 1) within preceptor, 2) within a group of preceptors, and 3) across the entire practice annually.

RESULTS

were compared with case-mix (pre-July 2012) and post-July 2012. Results. All 3 reassignment algorithms produced significant reductions in standard deviation of either number of disease categories or diagnoses across residents when compared with baseline (pre-July 2012) and actual July 2012 reassignment. Reassignment across the clinic and group provided the best and second best scenarios, respectively, although both came at the cost of initially reduced patient-preceptor continuity.

CONCLUSION

Systematically reallocating patient panels in teaching clinics potentially can improve the consistency and breadth of the educational experience. The method in principle can be extended to any target of health care system reform where there is patient or clinician turnover.

摘要

背景

为获得足够的培训经验,教学诊所的住院医师小组必须有足够多样化的患者病例组合。然而,不同住院医师小组的病例组合可能不同,导致培训不一致。

方法

使用2008年7月至2010年5月马萨诸塞州总医院基层医疗住院医师诊所的会诊数据(64名住院医师和约3800名患者),按性别、年龄、主要疾病类别(急性和慢性,如心血管急性、心血管慢性等,共44种疾病类别)和疾病类别数量对患者进行特征描述。住院医师小组之间的不平衡通过疾病类别、患者小组规模和年度就诊频率的标准差来表征。为平衡住院医师小组的病例组合,提出了患者重新分配算法。首先,按复杂性对患者进行排序;然后将患者依次分配到总体复杂性最低的小组。考虑了三种情况下住院医师小组之间的患者重新分配:1)在带教教师内部,2)在一组带教教师内部,3)每年在整个医疗机构内。

结果

与2012年7月前和2012年7月后的病例组合进行比较。结果。与基线(2012年7月前)和2012年7月实际重新分配相比,所有三种重新分配算法均使住院医师疾病类别或诊断数量的标准差显著降低。尽管诊所和小组内的重新分配都以最初患者与带教教师连续性降低为代价,但分别提供了最佳和次佳方案。

结论

系统地重新分配教学诊所的患者小组可能会提高教育经验的一致性和广度。该方法原则上可扩展到任何存在患者或临床医生更替的医疗保健系统改革目标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验