Suppr超能文献

使用改进的理查森法和盒计数法对树突形态进行分形分析。

Fractal analysis of dendrites morphology using modified Richardson's and box counting method.

作者信息

Ristanović Dusan, Stefanović Bratislav D, Puskas Nela

出版信息

Theor Biol Forum. 2013;106(1-2):157-68.

Abstract

Fractal analysis has proven to be a useful tool in analysis of various phenomena in numerous naturel sciences including biology and medicine. It has been widely used in quantitative morphologic studies mainly in calculating the fractal dimension of objects. The fractal dimension describes an object's complexity: it is higher if the object is more complex, that is, its border more rugged, its linear structure more winding, or its space more filled. We use a manual version of Richardson's (ruler-based) method and a most popular computer-based box-counting method applying to the problem of measuring the fractal dimension of dendritic arborization in neurons. We also compare how these methods work with skeletonized vs. unskeletonized binary images. We show that for dendrite arborization, the mean box dimension of unskeletonized images is significantly larger than that of skeletonized images. We also show that the box-counting method is sensitive to an object's orientation, whereas the ruler-based dimension is unaffected by skeletonizing and orientation. We show that the mean fractal dimension measured using the ruler-based method is significantly smaller than that measured using the box-counting method. Whereas the box-counting method requires defined usage that limits its utility for analyzing dendritic arborization, the ruler-based method based on Richardson's model presented here can be used more liberally. Although this method is rather tedious to use manually, an accessible computer-based implementation for the neuroscientist has not yet been made available.

摘要

分形分析已被证明是分析包括生物学和医学在内的众多自然科学中各种现象的有用工具。它已广泛应用于定量形态学研究,主要用于计算物体的分形维数。分形维数描述了物体的复杂性:如果物体更复杂,即其边界更崎岖、线性结构更曲折或空间填充更满,则分形维数更高。我们使用理查森(基于尺子)方法的手动版本和最流行的基于计算机的盒计数方法来解决测量神经元树突分支的分形维数问题。我们还比较了这些方法在骨架化与非骨架化二值图像上的工作情况。我们表明,对于树突分支,非骨架化图像的平均盒维数明显大于骨架化图像的平均盒维数。我们还表明,盒计数方法对物体的方向敏感,而基于尺子的维数不受骨架化和方向的影响。我们表明,使用基于尺子的方法测量的平均分形维数明显小于使用盒计数方法测量的分形维数。虽然盒计数方法需要特定的使用方式,这限制了它在分析树突分支方面的效用,但这里提出的基于理查森模型的基于尺子的方法可以更灵活地使用。尽管手动使用这种方法相当繁琐,但尚未为神经科学家提供一种易于使用的基于计算机的实现方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验