Suppr超能文献

使用智能手机进行活动识别。

Activity recognition with smartphone support.

机构信息

Department of Electronic & Computer Engineering, University of Limerick, Limerick, Ireland.

Department of Electronic & Computer Engineering, University of Limerick, Limerick, Ireland.

出版信息

Med Eng Phys. 2014 Jun;36(6):670-5. doi: 10.1016/j.medengphy.2014.02.009. Epub 2014 Mar 15.

Abstract

In this paper, the authors describe a method of accurately detecting human activity using a smartphone accelerometer paired with a dedicated chest sensor. The design, implementation, testing and validation of a custom mobility classifier are also presented. Offline analysis was carried out to compare this custom classifier to de-facto machine learning algorithms, including C4.5, CART, SVM, Multi-Layer Perceptrons, and Naïve Bayes. A series of trials were carried out in Ireland, initially involving N=6 individuals to test the feasibility of the system, before a final trial with N=24 subjects took place in the Netherlands. The protocol used and analysis of 1165min of recorded activities from these trials are described in detail in this paper. Analysis of collected data indicate that accelerometers placed in these locations, are capable of recognizing activities including sitting, standing, lying, walking, running and cycling with accuracies as high as 98%.

摘要

在本文中,作者描述了一种使用智能手机加速度计和专用胸部传感器准确检测人体活动的方法。还介绍了自定义移动分类器的设计、实现、测试和验证。离线分析比较了这种自定义分类器与事实上的机器学习算法,包括 C4.5、CART、SVM、多层感知机和朴素贝叶斯。在爱尔兰进行了一系列试验,最初涉及 N=6 个人以测试系统的可行性,然后在荷兰进行了 N=24 名受试者的最终试验。本文详细描述了该试验中使用的协议和对 1165 分钟记录活动的分析。对收集到的数据的分析表明,放置在这些位置的加速度计能够识别包括坐、站、躺、走、跑和骑自行车在内的活动,准确率高达 98%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验