Suppr超能文献

基于惯性传感器的不平衡数据的浅层和深度学习的步态活动分类。

Gait Activity Classification on Unbalanced Data from Inertial Sensors Using Shallow and Deep Learning.

机构信息

Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico.

Department of Computer Science, Centro de Investigación Científica y de Investigación Superior de Ensenada, Ensenada 22860, Mexico.

出版信息

Sensors (Basel). 2020 Aug 23;20(17):4756. doi: 10.3390/s20174756.

Abstract

Activity recognition is one of the most active areas of research in ubiquitous computing. In particular, gait activity recognition is useful to identify various risk factors in people's health that are directly related to their physical activity. One of the issues in activity recognition, and gait in particular, is that often datasets are unbalanced (i.e., the distribution of classes is not uniform), and due to this disparity, the models tend to categorize into the class with more instances. In the present study, two methods for classifying gait activities using accelerometer and gyroscope data from a large-scale public dataset were evaluated and compared. The gait activities in this dataset are: (i) going down an incline, (ii) going up an incline, (iii) walking on level ground, (iv) going down stairs, and (v) going up stairs. The proposed methods are based on conventional (shallow) and deep learning techniques. In addition, data were evaluated from three data treatments: original unbalanced data, sampled data, and augmented data. The latter was based on the generation of synthetic data according to segmented gait data. The best results were obtained with classifiers built with augmented data, with F-measure results of 0.812 (σ = 0.078) for the shallow learning approach, and of 0.927 (σ = 0.033) for the deep learning approach. In addition, the data augmentation strategy proposed to deal with the unbalanced problem resulted in increased classification performance using both techniques.

摘要

活动识别是普适计算中最活跃的研究领域之一。特别是步态活动识别有助于识别人们健康中的各种风险因素,这些因素与他们的身体活动直接相关。在活动识别中存在的一个问题,特别是步态识别中,通常数据集是不平衡的(即,类别的分布不均匀),由于这种差异,模型往往倾向于将类别划分为具有更多实例的类别。在本研究中,评估并比较了两种使用来自大规模公共数据集的加速度计和陀螺仪数据进行步态活动分类的方法。该数据集中的步态活动包括:(i)下斜坡,(ii)上斜坡,(iii)平地行走,(iv)下楼梯,和(v)上楼梯。所提出的方法基于传统(浅层)和深度学习技术。此外,还从三种数据处理方法评估了数据:原始不平衡数据、采样数据和扩充数据。后者是根据分段步态数据生成合成数据的基础上实现的。使用扩充数据构建的分类器获得了最佳结果,浅层学习方法的 F 度量结果为 0.812(σ=0.078),深度学习方法的 F 度量结果为 0.927(σ=0.033)。此外,所提出的数据扩充策略用于解决不平衡问题,使用这两种技术都提高了分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e92a/7506657/8f9bbc245934/sensors-20-04756-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验