Hudry Bruno, Thomas-Chollier Morgane, Volovik Yael, Duffraisse Marilyne, Dard Amélie, Frank Dale, Technau Ulrich, Merabet Samir
MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom.
Elife. 2014 Mar 18;3:e01939. doi: 10.7554/eLife.01939.
Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior-posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox-TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001.
尽管自然界中生物体型具有巨大的多样性,但两侧对称动物共享一组共同的发育基因,这些基因在胚胎中呈现出保守的表达模式。其中包括Hox基因,它们沿前后轴定义不同的特征。Hox蛋白通过与TALE转录因子相互作用发挥其功能。Hox和TALE成员在一些但并非所有非两侧对称动物门中也存在,这就引发了一个问题,即Hox-TALE相互作用是如何进化以提供位置信息的。通过使用来自单细胞和多细胞谱系的蛋白质,我们表明这些网络源自Hox和其他相关蛋白家族中存在的一个祖先通用基序。有趣的是,Hox-TALE网络经历了额外的和广泛的分子创新,这些创新可能对于沿身体蓝图区分Hox功能至关重要。我们的研究结果共同凸显了同源异型框基因家族在真核生物进化过程中是如何演化的,最终在后生动物中构成一个主要的模式系统。DOI: http://dx.doi.org/10.7554/eLife.01939.001 。