Suppr超能文献

动力学增强光动力疗法疗效:电荷转移和光稳定性在光敏剂选择中的作用

Photodynamic therapy efficacy enhanced by dynamics: the role of charge transfer and photostability in the selection of photosensitizers.

作者信息

Arnaut Luis G, Pereira Mariette M, Dąbrowski Janusz M, Silva Elsa F F, Schaberle Fábio A, Abreu Artur R, Rocha Luís B, Barsan Madalina M, Urbańska Krystyna, Stochel Grażyna, Brett Christopher M A

机构信息

Chemistry Department, University of Coimbra, 3004-535 Coimbra (Portugal), Fax: (+351) 239-827-703; Luzitin SA, Ed. Bluepharma, S. Martinho do Bispo, 3045-016 Coimbra (Portugal).

出版信息

Chemistry. 2014 Apr 25;20(18):5346-57. doi: 10.1002/chem.201304202. Epub 2014 Mar 18.

Abstract

Progress in the photodynamic therapy (PDT) of cancer should benefit from a rationale to predict the most efficient of a series of photosensitizers that strongly absorb light in the phototherapeutic window (650-800 nm) and efficiently generate reactive oxygen species (ROS = singlet oxygen and oxygen-centered radicals). We show that the ratios between the triplet photosensitizer-O2 interaction rate constant (kD) and the photosensitizer decomposition rate constant (kd), kD/kd, determine the relative photodynamic activities of photosensitizers against various cancer cells. The same efficacy trend is observed in vivo with DBA/2 mice bearing S91 melanoma tumors. The PDT efficacy intimately depends on the dynamics of photosensitizer-oxygen interactions: charge transfer to molecular oxygen with generation of both singlet oxygen and superoxide ion (high kD) must be tempered by photostability (low kd). These properties depend on the oxidation potential of the photosensitizer and are suitably combined in a new fluorinated sulfonamide bacteriochlorin, motivated by the rationale.

摘要

癌症光动力疗法(PDT)的进展应受益于一种原理,该原理可用于预测一系列在光疗窗口(650 - 800 nm)强烈吸收光并有效产生活性氧(ROS = 单线态氧和以氧为中心的自由基)的光敏剂中最有效的光敏剂。我们表明,三重态光敏剂 - O₂ 相互作用速率常数(kD)与光敏剂分解速率常数(kd)之比,即 kD/kd,决定了光敏剂对各种癌细胞的相对光动力活性。在携带S91黑色素瘤肿瘤的DBA/2小鼠体内也观察到了相同的疗效趋势。PDT疗效密切依赖于光敏剂 - 氧相互作用的动力学:通过光稳定性(低kd)来调节向分子氧的电荷转移以及单线态氧和超氧离子的生成(高kD)。这些性质取决于光敏剂的氧化电位,并根据该原理在一种新型氟化磺酰胺细菌叶绿素中得到了适当的结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验